
Db2 LUW Problem Determination and

Troubleshooting Workshop

Pavel Sustr

IBM Toronto Lab

Db2 Night Show, Season #10 GRAND FINALE

June 21, 2019 | Db2 for LUW

The popular troubleshooting seminar, updated with the newest Db2 11.1 problem determination

techniques and LIVE DEMOS! Learn how to identify and resolve database hangs, crashes, performance

problems, and data corruption issues. Get familiar with diagnostic tools. Learn how and when to use these

troubleshooting tools for a quick problem resolution. Topics covered: Performance; FODC; Hangs;

Latching; Crashes/Traps; Data Corruption. Attendees will be able to characterize a problem in order to

expedite resolution, learn how and what data to collect during intermittent hangs, slow-downs, and other

frequent problems, and understand Db2 Support's methodology in troubleshooting Db2 and even non-Db2

hiccups. The seminar contains live demos during which the audience will be given an opportunity to

perform an interactive investigation of selected problems.

11

PREFACE: ESSENTIAL THEORY

2

A Bit of History: Db2 Releases

• 9.1 – Db2 Viper

• 9.5 – Db2 Viper II

• 9.7 – Db2 Cobra

• 9.8 – Db2 pureScale® Feature

• 10.1 – Db2 Galileo

• 10.5 – Db2 Kepler

• 11.1 – Db2 11.1 with BLU Acceleration

3

3

• What happened? Where?

Crash Hang/Performance SQL Code/Error

• Is the server machine up?

• Is the client machine up?

• Is the OS responsive?

• Is the instance up?

• Is the database up?

• Are other databases under

the same instance alive?

• Is the application up?

• Is the server machine hung?

• Is the client machine hung?

• Is the OS/network hung?

• Is the instance hung?

• Is the database hung?

• Are other databases under

the same instance alive?

• Is the application hung?

• Occurred on the server?

• Occurred on the client?

• CLI/JDBC/ODBC?

• Meaning of SQLCODE?

• What was running?

• Reproducible?

• Traceable

• Expected?

Database?Instance? Application?

Server?Client?

OS? Network?Physical host?

Problem Determination Decision Tree

4

Most problems can be categorized into three main groups:

1. Crash

2. Hang/Performance

3. SQL Code/Error (unexpected results)

• To try and minimize the amount of data that needs to be collected and analyzed, it is beneficial to narrow down
the scope of the problem.

• For example, are all users receiving a particular error or is it just one user on a client machine? If its just one or a
few users or a particular application, start by examining the diagnostic information on the client side.

• If all the users/applications are reporting a problem, examine the diagnostic information on the database server.

• Note: "I am having trouble connecting to Db2" is NOT an error message we return. Rather "When
a user issues a connect to the db from the CLP as 'db2 connect to sample' they receive the
message ----> sql1042 - unexpected system error".

• Good practice is to include a brief description of the error message as it is defined. If the error message
contains additional details such as that for sql0444n - user defined function "<function-name>" ...
include all the additional info or secondary codes.

• Generally, secondary return codes are just SQL error codes i.e. sql2038 rc=1062 is really sql1062 -
undefined db path. Read the SQL error codes as they contain useful information and actions to take
that may potentially resolve the problem. Also provide the SQLSTATE.

• Can the problem be reproduced at will?

4

Db2 “MustGather” Documents

Installation

• Installation problems

• Db2 Fix Pack Install failure

• Db2 Uninstall Failure on Windows

Client / Server Connectivity

• Db2 Client Connectivity

• JDBC Applications and connectivity

• IBM Data Server driver for JDBC

• Db2 JDBC Type 2 driver

• CLI Applications

Compiler (Query Explain, Query Rewrite, Query Optimizer)

• Collecting Diagnostics for Db2 Compiler Issues

• Data corruption

• Index corruption

Backup / Restore

• Db2 Restore failure: from Disk

• Db2 Restore failure: from TSM

• Db2 Backup failure: from Disk

• Db2 Backup failure: from TSM

Read First: http://www-01.ibm.com/support/docview.wss?uid=swg21282870

Migration Issues

• Db2 Database migration issues

• Db2 Instance migration issues

Deadlocks and Locking Issues

• Db2 Deadlocks

• Db2 Locking Issues

• Db2 Lock Timeouts

Server Hang

• Db2 Hang on AIX

• Db2 Hang on Linux

• Db2 Hang on HP-UX

• Db2 Hang on Sun Solaris

• Db2 Hang on Windows

Other Topics

• Db2 Abend

• Db2 Stored Procedure issues

• data movement problems using db2move

• DAS and Instance management problems

5

Db2 “Must Gather” Documents

For every problem, collecting data can aid in problem determination and save time resolving Problem

Management Records (PMRs).

Gathering this data before calling IBM Db2 Support will help you understand the problem and save time

analyzing the data. These documents will help answer the question which information should I collect?

5

Hexadecimal Dumps and Byte Ordering

• Some machines address bytes starting with the high-order byte (big endian).
Others start with the low-order byte (little endian). For example, AIX and
Solaris are using the big-endian model whereas INTEL, in particular Windows
and Linux, use the little-endian model. The following shows how different sized
variables would look like when dumped:

Variable Size Big-endian Little-endian

32 bit 0x12345678 0x78563412

16 bit 0x1234 0x3412

8 bit 0x12 0x12

• This reversal of bytes will not only affect the reason codes you may see in the
Db2 diagnostic log file, but also will affect any other object hexadecimal dumps
you will find throughout the Db2 diagnostic log file.

6

6

Db2 Diagnostic Directory

• Determined by database manager configuration parameter DIAGPATH

• If not set then a default location is used (platform dependent)

• Types of files that you will see in there:

• db2diag.log

• Administration notification log (<instance>.nfy on UNIX)

• Trap files

• Dump files

• Core files (c<pid>.nnn/core)

• Flight recorders, also called Event recorders

7

•DB2DIAG.LOG file

•5 levels of instance level diagnostic settings – recommended is level 3

•Default location, but configurable

•Dump files are binary files that contain various pieces of diagnostic information (miscellaneous

components within Db2 will dump internal data structures, context, etc. when an error occurs). Only the

Db2 Support team is able to format these files.

•The core files only exist on UNIX. Limited debugging can be done but the Db2 source code is needed to

make a good use of them.

•The notification log only exists in UNIX. In Windows, notification log entries are written to the

Windows Event Log and can be viewed using the Event Viewer.

•Flight recorder is a feature available in 9.8 and newer. It is a kind of a permanently active lightweight

trace with a wrapping buffer which records recent events for a given component. As of now, the flight

recorder output is considered internal and the output files cannot be formatted (used) by end customers.

7

Db2 Diagnostic Directory in pureScale

• CF_DIAGPATH diagnostic data directory path configuration parameter for the

cluster caching facility (a.k.a. CF).

• Types of files that you will see in there:

• Same as normal Db2 diagnostic directory.

• CF diaglog (cfdiag*.log)

• CF Dump file (cfdump*.out)

• CF diagnostic specific files (mgmnt_lwd_dog.*, CAPD.*)

• CF diagnostic files when trap occurs (CAPD.*)

• Core files (core.*)

8

Possible scenario for CF_DIAGPATH setting :

When CF_DIAGPATH is not set (default), it will be same as DIAGPATH, then DIAG0128 &

DIAG0129 contains diagnostic dump from both Db2

(e.g. db2diag.log, admin log, etc) and CF (cfdiag*.log, cfdump*.out, etc)

When CF_DIAGPATH is set differently from DIAGPATH, then CF_DIAGPATH will have its own

DIAG0128 & DIAG0129 containing diagnostic dump from CF.

E.g. cfdiag*.log, cfdump*.out, etc

DIAGPATH will have its own DIAG0128 & DIAG0129 too, containing diagnostic dump from

Db2. E.g. db2diag.log, admin log, etc

8

Db2 Diagnostic Directory Location

• Db2 diagnostic data is located in the path specified by the DIAGPATH DBM

configuration parameter. Defaults:

• UNIX/Linux: INSTHOME/sqllib/db2dump

(e.g. /home/db2inst1/sqllib/db2dump)

• Windows: DB2INSTPROF\DB2INSTANCE

(e.g. C:\Documents and Settings\All Users\Application

Data\IBM\DB2\db2copy1\DB2)

9

In Windows environments: The default location of user data files, for example, files under instance

directories, varies from edition to edition of the Windows family of operating systems. Use the DB2SET

DB2INSTPROF command to get the location of the instance directory. The file is in the instance

subdirectory of the directory specified by the DB2INSTPROF registry variable.

9

Db2 Diagnostic Directory Location in pureScale

• Db2 diagnostic data located in the path specified by the DIAGPATH DBM
configuration parameter while CF_DIAGPATH set to default:

• UNIX/Linux: INSTHOME/sqllib/db2dump

(e.g. /home/db2inst1/sqllib/db2dump/<DIAG0000, DIAG0001, … DIAG0128,
DIAG0129>)

• If CF_DIAGPATH is set:
• DIAG0128 and DIAG0129 created on the specified CF_DIAGPATH

• DIAGPATH will also have its own DIAG0128 and DIAG0129

• Db2 will write into both locations

10

DIAG0128 and DIAG0129 are the diagnostic directories for the cluster caching facilities, a.k.a. CFs

10

Db2 Diagnostic Log – db2diag.log

• Diagnostic information is recorded to this file

• Mainly intended for Db2 Support
• All messages are written in English

• Many entries have no meaning without access to the Db2 source code

• However, still valuable to examine when trying to diagnose a problem yourself

• Diagnostic entries captured are determined by database manager
configuration parameter DIAGLEVEL:
• 0: No diagnostic data captured

• 1: Severe errors only

• 2: All errors

• 3: All errors and warnings (default)

• 4: All errors, warnings and informational messages

11

11

db2diag.log: Example Entry

2018-03-09-17.32.53.807782-300 I137556A486 LEVEL: Error

PID : 2535480 TID : 1 PROC : db2agent (TESTDB1)

INSTANCE: db2inst NODE : 000 DB : TESTDB1

APPHDL : 0-9 APPID: *LOCAL.db2inst1.050309223253

FUNCTION: DB2 UDB, buffer pool services, sqlbSMSDoContainerOp, probe:815

MESSAGE : Error checking container 0 (/db2dir/data_containers) for tbsp 2.

Rc = 840F0001

<timestamp>: Date and time when entry written (includes time zone at end)

<recordID>: Internal record ID (can be ignored)

LEVEL: Logging level (Info, Error, Warning, Severe, Event, etc.)

PID: Process ID

TID: Thread ID

PROC: Process name

INSTANCE: Instance name

NODE: Database partition number

DB: Database name

APPHDL: Internal application handle (not same as in LIST APPLICATIONS)

APPID: Application ID (same as shown in LIST APPLICATIONS)

FUNCTION: Product, component, function, and probe number

MESSAGE: In this example it’s a text message. You may also see RETCODE,

ARGS, DATA, OSERR, CALLED, etc.

12

As an example of solving a problem yourself using the db2diag.log file, consider the case where a table space has

been placed OFFLINE but you don’t know why that has happened. Provided that you are running with a high

enough DIAGLEVEL (the default will definitely capture this) you will see entries like this:

…

MESSAGE : Error checking container 0

(/home/db2inst1/db2inst1/NODE0000/SQL00001/SQLT0002.0) for tbsp 2.

Rc = 840F0001

…

RETCODE : ZRC=0x8402001E=-2080243682=SQLB_CONTAINER_NOT_ACCESSIBLE

"Container not accessible"

…

MESSAGE : ADM6023I The table space "USERSPACE1" (ID "2") is in state 0x"0".

The table space cannot be accessed. Refer to the documentation for

SQLCODE -290.

…

Looking at this, you can see that the table space has been placed offline because one of its containers is inaccessible
(“/home/db2inst1/db2inst1/NODE0000/SQL00001/SQLT0002.0”). If you fix the accessibility issue

you can then bring the table space back online.

12

Essential Tools: db2level

$ db2level

DB21085I This instance or install (instance name, where applicable: "db2inst1")

uses "64" bits and DB2 code release "SQL11011" with level identifier "0202010F".

Informational tokens are "DB2 v11.1.1.1", “s1612051900", "DYN1612051900AMD64", and Fix Pack "1".

Product is installed at "/opt/IBM/db2/V11.1".

Identifies the current level of your Db2 instance

db2inst1 Name of the current instance

64 Bitness of the instance (32 or 64 bits)

SQL11011 Product signature

0202010F Internal release number

DB2 v11.1.1.1 Fix Pack/Mod signature

s1612051900 Internal build level/date

DYN1612051900AMD64 Platform/PTF identifier (platform dependent)

1 Fix Pack number (platform independent)

/opt/IBM/db2/V11.1 Install path

13

13

Essential Tools: db2support

• Collects environment data about either a client or server machine and places the files
containing system data into a compressed file archive.

• The following syntax variations cover most problems:

1) Collect data while the database is responsive

db2support <outputdir> –d <dbname> -c –s

2) Collect data while a database hang is suspected

db2support <outputdir> –d <dbname> –s

3) Collect data for a reproducible query performance problem:

db2support <outputdir> -d <dbname> -sf <sqlfile> -cl 1

• Note: The “-c” switch allows db2support to connect to the database. This is not desirable
during suspected database hangs.

14

-d database_name | -database database_name

Specifies the name of the database for which data is being collected.

-c | -connect

Specifies that an attempt be made to connect to the specified database.

-s | -system_detail

Specifies that detailed hardware and operating system information is to be gathered.

-sf SQL file | -sqlfile SQL file

Specifies the file path containing the SQL statement for which data is being collected.

-cl | -collect

Specifies the value of the level of performance information to be returned. Valid values are:

0 = collect only catalogs, db2look, dbcfg, dbmcfg, db2set

1 = collect 0 plus db2exfmt, db2caem (if -aem or -actevm, -appid, -uowid, -actid are specified)

2 = collect 1 plus .db2service (this is the default)

3 = collect 2 plus db2batch

14

Essential Tools: db2diag

• Provides the ability to filter and format db2diag.log messages

• Dozens of options available

• Run the following for details:
db2diag -h [<option> | brief | examples | tutorial | notes | all]

• Examples:
db2diag -filter db=TESTDB -node 0 –time 2018-03-08-17.42.35.164191

db2diag -gi "level=severe" -H 1d

15

db2diag -filter db=TESTDB -node 0 -time 2010-03-08-17.42.35.164191: Shows all db2diag.log entries

that are associated with database TESTDB on database partition (node) 0 that were written since the given

timestamp.

db2diag -gi “level=severe” -H 1d: Shows all db2diag.log entries that are listed as “Severe” (-gi is a case-

insensitive search) that were added in the last day.

15

APARs

• Authorized Program Analysis Reports
• Bugs in code or documentation that require a fix

• Fixes for APARs are provided through Db2 Fix Packs

• Search on known APARs from Db2 Support site

• Tip: Search for keywords related to your problem, including:
• Db2 source code function names from:

• db2diag.log

• notification log

• trap files (functions near the top of the stack)

• SQLCODEs – e.g. SQL1042C/SQL1042/-1042

• Operation/utility/workload being performed at time of problem

• E.g. “SQL1042C and db2start”

16

•Note that for trap files, the top couple of functions may be common error handling routines within Db2.

Therefore, many different problems may show the same set of functions at the top of the stack.

•For these cases, what’s really important may be what’s “below” it. Therefore, when searching on the

function names make sure that you try different ones as part of the search.

16

TRAP PROBLEM DETERMINATION

17

Trap Definition

• A crash/abend is a very generic term to describe any time Db2 comes down

when it should not, i.e. an abnormal end

• A trap occurs when a process or thread receives a signal or raises an

exception as the result of an instruction which cannot be executed. A trap is a

very specific term and is not to be confused with “panic”, “shutdown”, "stop", or

the more generic term of "crash". When discussing a scenario where you are

sure Db2 trapped, use that terminology, i.e. "Db2 trapped" or "the instance

trapped“.

18

18

Scope of Outage: Terminology

• “Instance abend” is an abend of the entire database manager (DBM). All

connections to all databases will be terminated, processing will halt

completely, and Db2 engine processes will disappear.

• “Database abend” means a shutdown of a specific database only. All

connections to that specific database will be terminated, but the Db2 engine

will remain up and running, and other databases will function normally.

TIP: if db2start needs to be run, it is an instance abend.

19

19

20

Multiprocessed Architecture

• UNIX/Linux, Db2 V9.1 and older – multiprocessed:

$ db2nps 0

Node 0

UID PID PPID C STIME TTY TIME CMD

psustr 1175724 3109032 0 Sep 29 - 0:03 db2sysc

psustr 856180 1175724 0 Sep 29 - 0:02 db2ipccm

psustr 1302588 1175724 0 Sep 29 - 0:00 db2gds

psustr 1323260 1175724 0 Sep 29 - 0:00 db2resync

nobody 1335386 1175724 0 Oct 01 - 0:00 db2fmp (C)

psustr 1355860 1175724 0 Sep 29 - 5:32 db2hmon

root 1753288 1175724 0 Sep 29 - 0:00 db2ckpwd

root 1847322 1175724 0 Sep 29 - 0:00 db2ckpwd

root 2846734 1175724 0 Sep 29 - 0:00 db2ckpwd

psustr 1720496 856180 0 Sep 29 - 0:02 db2agent (idle)

psustr 2019378 856180 0 Oct 01 - 0:08 db2agent (idle)

psustr 2306128 856180 0 Sep 29 - 0:19 db2agent (idle)

psustr 3047456 856180 0 Oct 01 - 0:08 db2agent (idle)

psustr 909438 1302588 0 Sep 29 - 0:00 db2srvlst

Every engine dispatchable unit (EDU) implemented via a separate UNIX

process having a unique process ID.

20

21

Multithreaded + Multiprocessed Architecture

• UNIX/Linux 9.7+ – multiprocessed and multithreaded:
$ db2nps 0

Node 0

UID PID PPID C STIME TTY TIME CMD

psustr 3219534 3100840 0 16:21:33 - 0:00 db2sysc 0

root 2269266 3219534 0 16:21:34 - 0:00 db2ckpwd 0

root 2871470 3219534 0 16:21:34 - 0:00 db2ckpwd 0

root 3039246 3219534 0 16:21:34 - 0:00 db2ckpwd 0

All EDUs now implemented as threads inside a single db2sysc. A new db2pd –edus

command can be used to view the threads:

$ db2pd -edus

<...>

EDU ID TID Kernel TID EDU Name USR SYS

===

2828 2828 5619907 db2resync 0 0.001298 0.000077

2571 2571 5652681 db2ipccm 0 0.000673 0.000318

2314 2314 5242967 db2licc 0 0.000828 0.000671

2057 2057 5460085 db2pdbc 0 0.000723 0.000072

1800 1800 5648583 db2extev 0 0.000861 0.000068

<...>

▪ Windows: always multiprocessed and multithreaded
21

Db2 runtime environment

EXECUTABLES

db2sysc

db2fmp

db2start

db2stop

…

APPLICATION LIBRARIES

libdb2e.*

libdb2a.*

IBMOSauthserver.*

…

db2engn.dll

db2app.dll

db2abind.dll

…

RUNTIME LIBRARIES

libC.*

libpthreads.*

libcrypt.*

…

user32.dll

kernel32.dll

ntdll.dll

…

Db2

development

Db2

development

OS

development,

ANSI C

standards

Note the arrows!

22

22

Db2 runtime environment

• Db2, just like most other programs, consists of three main component areas:

• Program executables: usually contain some very basic functionality. Most of the important

code is located in application libraries (see below).

• Application libraries: the majority of code. Db2 libraries are *roughly* organized according

to their use. For example, most engine code is located in libdb2e.* (‘e’ standing for

‘engine’) on UNIX or DB2ENGN.DLL on Windows.

• Runtime libraries: helper libraries allowing the developer to utilize for example the standard

C/C++ library routines, cryptographic features, etc. This code is not owned or created by

Db2 development. If you see a crash in a runtime library, chances are that the problem is in

the caller (Db2).

• Each component (executable, library) lives in its own address space. The

address is assigned by the operating system.

23

23

Failing Line of Code

• Determining the line of code is the same on all platforms. You will need to

know:

1. Name of the program/library that you are executing in

2. Address range where this executable/program has been loaded

3. Offset at which you are executing – relative to the beginning of the library

24

24

25

Child (db2agent)

Executes Instruction involving
memory access

OS

Invalid address, OS sends SIGSEGV

segv handler invoked,
sqleagnt_sigsegvh entries,
diag dumps, core path set,

segv handler reset to default

Re-Executes Instruction

Invalid address, OS sends SIGSEGV

(default action for
segv handler

is core and exit)

Memory Manager

can't resolve address

core and exit

SIGCHLD to parent

Db2 Trap Signal Handling on UNIX/Linux

25

Inside the sqloEDUCodeTrapHandler function:

•A request is made to access some information in memory.

•The OS sends a signal to the process indicating the its an invalid address in memory.

•Db2’s signal handler receives this signal and dumps information to the db2diag.log and sets up the path

to the CORE file. The signal handler then resets itself.

•Db2 then requests the same information from memory again.

•The OS sends a signal to the process indicating the its an invalid address in memory.

•Db2’s signal handler receives the signal from the OS and produces a CORE and exits.

•This is done to give us the opportunity to dump diagnostic information on receiving the first signal from

the OS.

26

Db2 Exception Handling on Windows

• Db2 crash handling on Windows is implemented via exception handlers. When

an exception occurs, a trap file that captures the exception context is written.

• The basic principles of this concept are similar to the previous picture showing

UNIX/Linux crash signal handling, except that on Windows there are no

signals but exceptions.

26

When Trap Is Detected

1. Create the usual FODC package (traps, etc.)

2. Determine if the trap can be sustained (details later)

3. If not sustainable, log ADM14011C

4. If sustainable, log ADM14012C

5. Drop application connection with SQL1224N

6. Rollback transaction, basic EDU cleanup

7. If success, log ADM14013C

8. If sustainable, suspend the EDU

9. If sustainable, other applications can use the instance

10. If sustainable, the instance can be recycled at a convenient time

27

•Customers may experience unexpected Db2 outages

•These outages cause loss of business and inconvenience

•The goal is to reduce unexpected outages and increase data availability

Trap Resilience

A trap is an interrupt caused by an exceptional situation in Db2

Customers experience unexpected traps causing losses of business

The feature will keep the instance up during this kind of service interrupts

27

Trap Resilience: Sustainability

• The following list contains examples of when a trap cannot be sustained. The
actual implementation is subject to change without any notice, even between
Fix Pack:

• Outage type is NOT a trap (e.g. bad page, index error)

• EDU already in the process of sustaining a trap

• EDU is running a utility (backup, restore, load, inspect, ...)

• EDU is issuing a DDL (only DML supported at the moment)

• EDU is executing a Db2 kernel operation

• DUMPCORE is enabled in the DB2FODC registry variable

• Trap resilience can be disabled by the DB2RESILIENCE registry variable.
Default: ON

28

28

Trap Files

• A trap file is a snapshot for the state of a Db2 process

• The state reflects the situation at the time when the trap file was generated, i.e.
not much historical data

• Generated automatically if processing cannot continue because of an
exception, or for serviceability reasons by Db2

• Contains the function sequence that was running when the error occurred

• Also contains information about the state of the process when the exception
was caught, e.g. contents of registers, disassembly of code around the failing
line, etc.

29

29

Trap Files – Naming Convention

Platform Name

UNIX/Linux <pid>.<eduid>.<node>.trap.txt

Windows <pid>.<tid>.trap.bin

• On UNIX/Linux, the file is text-based

• On Windows, the file is binary. In order to translate the binary file into text, a
formatting utility (db2xprt) and debug symbol files are required, both of

which are shipped with the product.

30

Traps, if existing, will always reside in the Db2 diagnostic directory (DIAGPATH).

30

Trap File Contents

• Build date

• Version Number

• Time of the dump

• Signal or Exception which generated the dump

• Process & thread ID

• Loaded libraries (common referred to as the “map”)

• Address of signal handlers

• Registry dumps

• Call Stack – a detailed call stack

• A dump of the OSS Memory sets

• Latch information for the EDU

• Locks being waited on

• Assembly code dump, …
31

31

Trap File Header

DB2 build information: DB2 v11.1.1.1 s1612051900 SQL11011 1

timestamp: 2018-07-05-16.51.29.801489 2

instance name: db2inst1.001 3

EDU name : db2agntp (SAMPLE) 1 [-] 4

EDU ID : 128 5

Signal #11 6

uname: S:Linux R:3.0.101-63-default ... M:x86_64 N:demobox 7

process id: 25676 8

parent process id: 25672 9

thread id : 140201049450240 (0x7F8319BFE700) 10

kthread id : 26587 11

Refer to Speaker’s Notes.

32

1. Db2 version information.

2. Timestamp when the trap file was generated.

3. Instance name and node number.

4. Name of the EDU and the database the EDU is connected to.

5. EDU ID, visible for example in “db2pd –edus”.

6. Signal that generated the trap file.

7. OS version, machine number and machine name. “man uname” on a UNIX box for more information.

8. Process ID.

9. Parent process ID.

10. Thread ID.

11. Internal Kernel thread ID.

32

33

Signal #11

0 strcpy

1 sqlbObjFileName

2 sqlbSMSOpenContainer

3 sqlbSMSGetOpenInfo

4 sqlbSMSDeleteObject

5 sqldDropObj

6 sqldDropTable

7 sqlbPFPrefetcherEntryPoint

8 sqloCreateEDU

9 sqloRunGDS

10 sqloInitEDUServices

11 sqloRunInstance

12 DB2main

13 main

Function on top of stack

F
u

n
ct

io
n
 c

al
l

se
q
u
en

ce

Potential problematic function

to begin searching on.

How to read a call stack:

Call Stack

33

NOTE: In general, you would want to search for the function on the top of the stack.

•In this example, the function strcpy() is a C library function and is less likely to by the culprit (not

impossible).

•The most likely culprit is the caller to the strcpy() function. The strcpy() function may just be the victim.

Trap Signals/Exceptions

UNIX/Linux Signal ID Description

SIGILL(4), SIGFPE(8), SIGTRAP(5), SIGBUS(10,

Linux: 7), SIGSEGV(11), SIGKILL(9)

Instance trap. Bad programming, HW errors, invalid

memory access, stack and heap collisions,

problems with vendor libraries, OS problems. The

instance shuts down.

Windows Exception Description

ACCESS_VIOLATION (0xC0000005)

ILLEGAL_INSTRUCTION (0xC000001D)

INTEGER_DIVIDE_BY_ZERO (0xC0000094)

PRIVILEGED_INSTRUCTION (0xC0000096)

STACK_OVERFLOW (0xC00000FD)

Instance trap. Bad programming, HW errors, invalid

memory access, stack overflows, problems with

vendor libraries, OS problems. The instance shuts

down.

34

•On UNIX, a signal can be sent to a Db2 process by issuing a “kill - <signal #>. Signals are defined in the “signals.h”
header file.

•For example, on AIX 5.3, the signal.h header file is located in /usr/include.sys/signal.h

•An extract of the signal.h header file is as follows:

#define SIGHUP 1 /* hangup, generated when terminal disconnects */

#define SIGINT 2 /* interrupt, generated from terminal special char */

#define SIGQUIT 3 /* (*) quit, generated from terminal special char */

#define SIGILL 4 /* (*) illegal instruction (not reset when caught)*/

#define SIGTRAP 5 /* (*) trace trap (not reset when caught) */

#define SIGABRT 6 /* (*) abort process */

#define SIGEMT 7 /* EMT intruction */

#define SIGFPE 8 /* (*) floating point exception */

#define SIGKILL 9 /* kill (cannot be caught or ignored) */

#define SIGBUS 10 /* (*) bus error (specification exception) */

….

….

• To send an abort signal (SIGABRT) to a process, issue a “kill -6 <pid>”.

• On Windows, use db2pd –stack to send “signals” to db2 processes/threads.

• WARNING: DO NOT randomly issue signals to a Db2 process unless directed to by Db2 Service.
Sending inappropriate signals can lead to database problems.

34

Abend Symptoms

SQL1032N No start database manager command was issued. SQLSTATE=57019

SQL1224N The database manager is not able to accept new requests, has terminated

all requests in progress, or has terminated your particular request due to a

problem with your request.

Applications or users receive an error indicating the death of the database

manager when a request is submitted to the database. Common errors are:

OR

35

35

Workshop Environment

$ db2level

DB21085I Instance "db2inst1" uses "64" bits and DB2 code release "SQL09070"

with level identifier "08010107".

Informational tokens are "DB2 v9.7.0.0", "s090521", "LINUXAMD6497", and Fix

Pack "0".

Product is installed at "/opt/ibm/db2/V9.7".

$ uname -a

Linux demobox 3.0.13-0.27-default #1 SMP Wed Feb 15 13:33:49 UTC 2012 (d73692b) x86_64

x86_64 x86_64 GNU/Linux

The exercises assume the existence a single partitioned Db2 instance running

Db2 9.7 GA. Real life scenarios are used whenever possible, otherwise a

customized Db2 library or other simulated tricks may be used ☺. The GA level

was specifically chosen to allow us to reproduce known problems.

36

Before we begin with the hands-on, a few words about the environment. If you meet these conditions, you

can apply the customized libraries to your environment so you can try this at home, too ☺

36

Scenario

$ db2 "connect to sample"

Database Connection Information

Database server = DB2/LINUXX8664 9.7.0

SQL authorization ID = DB2INST1

Local database alias = SAMPLE

$ db2 "alter tablespace IBMDB2SAMPLEREL managed by automatic storage"

DB20000I The SQL command completed successfully.

$ db2 "alter tablespace IBMDB2SAMPLEREL lower high water mark"

DB20000I The SQL command completed successfully.

$ db2 "list tables"

SQL1224N The database manager is not able to accept new requests, has

terminated all requests in progress, or has terminated the specified request

because of an error or a forced interrupt. SQLSTATE=55032

37

37

Scope of Outage: Applied

$ db2 list active databases

SQL1032N No start database manager command was issued. SQLSTATE=57019

$ db2nps 0

Node 0

UID PID PPID C STIME TTY TIME CMD

$ db2pd -edus

Unable to attach to database manager on partition 0.

Please ensure the following are true:

- db2start has been run for the partition.

Conclusion: The entire database manager is down. This is an instance abend
(not a database one). Will need to run db2start eventually.

For example, the following commands can be used to narrow down the scope of

the outage:

38

-db2nps <nodenum> shows the process list for the given node, similar to a ps output on UNIX

-db2pd –edus shows the running threads/processes for the current instance

38

Diagnostics Produced by Trap

• Errors written to the db2diag.log

• Message written to the notify log (*.nfy)

• Errors written to the operating system logs

• Trap and dump files created in the DIAGPATH

• Core dumps for Db2 processes

• FODC package created in the DIAGPATH

39

39

Diagnostics: Applied

$ db2 get dbm cfg | grep DIAGPATH

Diagnostic data directory path (DIAGPATH) = /home/db2inst1/sqllib/db2dump

$ ls -l /home/db2inst1/sqllib/db2dump

total 72

-rw-rw-rw- 1 db2inst1 db2iadm1 53465 Mar 26 11:30 db2diag.log

-rw-rw-rw- 1 db2inst1 db2iadm1 1372 Mar 26 11:30 db2inst1.nfy

drwxr-x--- 4 db2inst1 db2iadm1 4096 Mar 26 11:30 FODC_Trap_2018-03-26-11.30.45.417849

drwxrwxr-t 2 db2inst1 db2iadm1 4096 Mar 26 11:30 stmmlog

Always remember to check the DIAGPATH first:

Conclusion: The presence of the “FODC_Trap” directory tells us right away that

we are dealing with an instance-wide trap.

40

40

Time of Outage: Step 1

2018-03-26-11.30.45.695289-240 I9822E563 LEVEL: Error

PID : 26689 TID : 140093448775424PROC : db2sysc 0

INSTANCE: db2inst1 NODE : 000 DB : SAMPLE

APPHDL : 0-14 APPID: *LOCAL.DB2.120326153046

AUTHID : DB2INST1

EDUID : 31 EDUNAME: db2agent (SAMPLE) 0

FUNCTION: DB2 UDB, base sys utilities, sqleagnt_sigsegvh, probe:1

MESSAGE : Error in agent servicing application with coor_node:

DATA #1 : Hexdump, 2 bytes

Examine db2diag.log, find the first timestamp pertinent to the outage:

Good strings to search for:

• “Error in agent”

• “pdEDUIsInDB2KernelOperation”

• “pdResilienceIsSafeToSustain”

• “FODC_Trap…” (name/type of the FODC directory)

Note the trapping EDU is db2agent with the EDUID of 31.
41

41

Time of Outage: Step 2

2018-03-26-11.30.40.646008-240 E8240E535 LEVEL: Event

PID : 26689 TID : 140093469746944PROC : db2sysc 0

INSTANCE: db2inst1 NODE : 000 DB : SAMPLE

APPHDL : 0-8 APPID: *LOCAL.DB2.120326153040

AUTHID : DB2INST1

EDUID : 26 EDUNAME: db2stmm (SAMPLE) 0

FUNCTION: DB2 UDB, Self tuning memory manager, stmmLogGetFileStats, probe:565

DATA #1 : <preformatted>

New STMM log file (/home/db2inst1/sqllib/db2dump/stmmlog/stmm.0.log) created automatically.

2018-03-26-11.30.45.279811-240 E8776E487 LEVEL: Info

PID : 26689 TID : 140093448775424PROC : db2sysc 0

INSTANCE: db2inst1 NODE : 000 DB : SAMPLE

APPHDL : 0-14 APPID: *LOCAL.DB2.120326153046

AUTHID : DB2INST1

EDUID : 31 EDUNAME: db2agent (SAMPLE) 0

FUNCTION: DB2 UDB, buffer pool services, sqlbExtentMovementEntryPoint, probe:4829

DATA #1 : <preformatted>

Extent Movement started on table space 3

Continue to search db2diag.log backwards, find the first unrelated timestamp:

The sqlbExtentMovementEntryPoint message still has the timestamp of the

outage. The preceding one is 5 s away. Also note the EDUID for the preceding

message is 26 – different from the trap (31).

42

42

What Happened: Step 1

$ ls -l FODC_Trap_2018-03-26-11.30.45.417849

total 8784

-rw-r--r-- 1 db2inst1 db2iadm1 17811 Mar 26 11:30 03915407.000.locklist.txt

drwxr-x--- 2 db2inst1 db2iadm1 4096 Mar 26 11:30 26689.000.core

-rw-r--r-- 1 db2inst1 db2iadm1 223795 Mar 26 11:30 26689.31.000.apm.bin

-rw-r----- 1 db2inst1 db2iadm1 1193 Mar 26 11:30 26689.31.000.cos.txt

-rw-r--r-- 1 db2inst1 db2iadm1 209197 Mar 26 11:30 26689.31.000.db2pd.SAMPLE.txt

-rw-r--r-- 1 db2inst1 db2iadm1 1894480 Mar 26 11:30 26689.31.000.dump.bin

-rw-r--r-- 1 db2inst1 db2iadm1 164078 Mar 26 11:30 26689.31.000.rawstack.txt

-rw-r--r-- 1 db2inst1 db2iadm1 29693 Mar 26 11:30 26689.31.000.trap.txt

-rw-r--r-- 1 db2inst1 db2iadm1 2206 Mar 26 11:30 chkconfig.txt

-rw-r----- 1 db2inst1 db2iadm1 6291312 Mar 26 11:30 db2eventlog.000.crash

-rw-r--r-- 1 db2inst1 db2iadm1 3724 Mar 26 11:30 db2pd.bufferpools.SAMPLE.txt

-rw-r--r-- 1 db2inst1 db2iadm1 9883 Mar 26 11:30 db2pd.dbcfg.SAMPLE.txt

-rw-r--r-- 1 db2inst1 db2iadm1 8716 Mar 26 11:30 db2pd.dbmcfg.txt

-rw-r--r-- 1 db2inst1 db2iadm1 743 Mar 26 11:30 db2pd.dbptnmem.txt

-rw-r--r-- 1 db2inst1 db2iadm1 7213 Mar 26 11:30 db2pd.memory.SAMPLE.txt

drwxr-xr-x 2 db2inst1 db2iadm1 4096 Mar 26 11:30 OSSNAPS

-rw-r--r-- 1 db2inst1 db2iadm1 21376 Mar 26 11:30 procmaps.txt

Examine the “FODC_Trap” path, locate the trap file for EDU 31

43

43

What Happened: Step 2

$ cat 26689.31.000.trap.txt | c++filt > 26689.31.000.trap.txt.filtered

$ vi 26689.31.000.trap.txt.filtered

DB2 build information: DB2 v9.7.0.0 s090521 SQL09070

timestamp: 2018-03-26-11.30.45.445398

instance name: db2inst1.000

EDU name : db2agent (SAMPLE) 0

EDU ID : 31

Signal #11

…

<StackTrace>

---FUNC-ADDR---- ------FUNCTION + OFFSET------

00007F6A1804D109 ossDumpStackTraceEx + 0x01e5

00007F6A18047F2A OSSTrapFile::dumpEx(unsigned long, int, siginfo*, void*, unsigned long) + 0x00cc

00007F6A1AA6A2A9 sqlo_trce + 0x02eb

00007F6A1AAAB9B1 sqloEDUCodeTrapHandler + 0x0167

…

00007F6A19D3FCF6 sqlbAlterPoolAct(unsigned short, SQLP_LSN8*, SQLB_GLOBALS*) + 0x03f8

…

00007F6A19E0D5BB sqldmpnd(sqeAgent*, int, char*, SQLP_LSN8*, SQLD_RECOV_INFO*) + 0x01cb

00007F6A1AADD1A9 sqlptppl(sqeAgent*) + 0x02f7

00007F6A1969EE2A sqlpxcm1(sqeAgent*, SQLXA_CALL_INFO*, int) + 0x05ae

00007F6A1970EE5D sqlrrcom(sqlrr_cb*, int, int) + 0x0467

00007F6A19D16AC5 sqlbEMReduceContainers(SQLB_POOL_CB*, unsigned int, sqeBsuEdu*) + 0x0341

00007F6A19D15672 sqlbLockAndMoveExtents(SQLB_POOL_CB*, bool, unsigned int, sqeBsuEdu*) + 0x04be

00007F6A19D1B4C5 sqlbExtentMovementEntryPoint(sqeBsuEdu*, void*) + 0x00bf

00007F6A192708B3 sqleIndCoordProcessRequest(sqeAgent*) + 0x062b

Examine the contents of the trap file, especially the signal/calling stack.
Optionally, use “c++filt” to demangle the names on the stack.

44

The “c++filt” utility can be used to demangle stack symbols. During compilation, the C compiler always

replaces routine names chosen by the developer with their “mangled” equivalents chosen and generated

by the compiler. The “mangled” routine name looks somewhat similar to the original. Example:

Original: sqlbAlterPoolAct(unsigned short, SQLP_LSN8*, SQLB_GLOBALS*)

Mangled: _Z16sqlbAlterPoolActtP9SQLP_LSN8P12SQLB_GLOBALS

The purpose of “mangling” is to ensure that all routine names in the scope of the program being executed

are unique. The disadvantage is that this process affects the readability of symbols. The “c++filt” utility

can be used to revert to the original human readable routine names, i.e. demangle the routine names. This

utility is a standard part of the C compiler (i.e. not part of Db2).

44

What Happened: Step 3

Time to summarize:

1. Trapped right after ALTER TABLESPACE – possibly reproducible?

2. An instance-wide trap.

3. Signal #11 (SIGSEGV) indicates an unexpected error.

4. The most recent routine on the stack is sqlbAlterPoolAct – perhaps something to do with a
pool (tablespace) alter?

5. The first db2diag.log message is from routine sqlbExtentMovementEntryPoint – perhaps
something to do with Extent Movement?

6. The EDU name is “db2agent”.

PRETTY GOOD DESCRIPTION => search for existing APARs!

45

45

What Happened: Step 4

Search for Db2 APARs at IBM Support Portal

46

https://www.ibm.com/support/home/

Kewords used: “trap sqlbAlterPoolAct sqlbExtentMovementEntryPoint”

IC62375: Trap on Alter Tablespace

Error description

Issuing "ALTER TABLESPACE <name> MANAGED BY AUTOMATIC STORAGE"

on a table space with is already automatic-storage-enabled may

result in a panic on a subsequent ALTER TABLESPACE statement.

All processes associated with the instance will be terminated,

errors will be logged to db2diag.log, and a FODC_Trap

subdirectory will be created in the db2dump directory.

The db2diag.log will contain a message similar to:

2009-08-05-17.18.35.379272-240 E10400E482 LEVEL: Info

PID : 23098 TID : 47582189447488PROC :

db2sysc

INSTANCE: tomhart NODE : 000 DB : SAMPLE

APPHDL : 0-36 APPID: *LOCAL.DB2.090805211845

AUTHID : TOMHART

EDUID : 72 EDUNAME: db2agent (SAMPLE)

FUNCTION: DB2 UDB, buffer pool services,

sqlbExtentMovementEntryPoint, probe:4829

DATA #1 : <preformatted>

Extent Movement started on table space 3

The call stack for the failing EDU will be similar to:

sqlbAlterPoolActContOps

sqlbAlterPoolAct

46

storMgrAction

sqldmpnd

46

Appendix I: Common Prefixes

• Db2 routines use a prefix that can be used in order to determine the area the routine belongs to, e.g.:

sql, squ Backup and Restore

sqb Buffer Pool Services: buffer pools, data storage management, table spaces, containers, I/O,

prefetching, page cleaning

sqf Configuration - database, database manager, configuration settings

sqd, sqdx, sqdl Data Management Services: tables, records, long field and lob columns, REORG TABLE utility

sqp, sqdz Data Protection Services: logging, crash recovery, rollforward

hdr High Availability Disaster Recovery (HADR)

sqx Index Manager

sqrl Catalog Cache and Catalog Services

sqng Code Generation (SQL Compiler)

squ, sqi, squs, sqs Load, Sort, Import, Export

sqpl Locking

sqno, sqnx, sqdes Optimizer

sqo, sqz, oss Operating System Services: AIX, Linux, Solaris, HP-UX platforms
47

Note the symbolic names use add an extra ‘l’. For example, sqlbAlterPoolAct from the previous example

has the prefix of ‘sqlb’, which translates to component ‘sqb’ – buffer pool services.

47

Appendix II: Core Files

• For UNIX-based systems, when Db2 terminates abnormally, a core file is generated by the
operating system.

• Among other things, the core image will include most or all of Db2’s memory allocations, which
may be required for problem analysis.

• By default, Db2 core files are located in the path
$HOME/sqllib/db2dump/<core_directory>, where <core_directory> is the core
path directory name.

• If the corefile ulimit is set to unlimited, Db2 will override this with a smaller number unless
instructed otherwise (DB2FODC). This will prevent filling up the file system if an outage
happens and a core needs to be generated.

• A Windows equivalent of a UNIX-based core file is a process (mini)dump. Process dumps can
be configured at the OS level or by using advanced debug techniques (ADPlus, WinDbg,
Userdump).

48

There is one directory for each process. Directory names start with the letter "c", followed by the process identifier

(pid) number of the affected process. A name extension provides the database partition number.

For example:

$HOME/sqllib/db2dump/c56772.010 is a directory containing a core file for the process with pid 56772

on partition 10.

Default core size on linux is zero, default on AIX is 1G, etc.

Cores generated through our trap handler are truncated to 2G if they are bigger;

Cores created outside of our trap handler can be bigger.

48

Appendix III – Sleeping Beauty

• For reproducible problems, sometimes it is useful to “freeze” the instance while

the problem is happening, e.g. in order to attach a debugger

• An internal registry variable, DB2SLEEP, achieves just that
db2set DB2SLEEP=ON

• When enabled, DB2SLEEP suspends the instance after creating the FODC

package, meaning the problematic process/EDU will still exist

• The sleeping instance can be resumed by
db2pdcfg -wakeupinstance

Use with caution!

49

49

Appendix IV – Debuggers

Action dbx gdb Windbg

Attach to process dbx [-a pid] prog [core] gdb [prog[core|procID]] windbg [-p pid | -z core | prog]

Call stack where bt, where kb, kp, kd

Registers registers info registers r

Loaded libraries map info sharedlibraries lm

Running threads thread info threads ~

Switch thread thread <tid> thread <tid> ~ <tid>

Switch frame frame <id> frame <id> .frame <id>

Examine memory x <addr>/<fmt> x/<fmt> <addr> dw, db, dc <addr>

Disassemble listi <addr> disas <addr> u <addr>

Print expression print <exp> print <exp> ? <exp>

• Wiki: A debugger or debugging tool is a computer program that is used to test

and debug other programs (the "target" program).

• Frequently used commands:

50

50

DATA CORRUPTIONS

51

Abort/Panic Definition

• A crash/abend is a very generic term to describe any time Db2 comes down

when it should not, i.e. an abnormal end

• A panic is a self-induced crash. Typically a panic occurs in error paths where

there is no reasonable way to handle the error and continue operation. In the
engine, panics typically end up invoking sqle_panic(). For example, we

typically panic after reading a page from disk and discovering that its

checksum is bad. Panics typically mark the database as bad.

52

52

Essential Tools: db2dart

• Database Analysis and Reporting Tool

• Offline tool for checking the architectural correctness of a database

• Critical for investigating problems involving data corruption

• Options for inspecting, formatting, and repairing data

• Other pieces of functionality as well (e.g. high-water mark options)

• Run db2dart to see all of the supported options

• Runs against the data on disk

• Not aware of what’s in the buffer pool (unlike INSPECT command)

• May show false errors if users are connected to the database

53

db2dart should not be run while the database is up and running. Because it deals with data directly on

disk, it is not aware of changes that may exist to pages in the buffer pool. As a result, it may give false

errors. Similarly, if run on a database that is inconsistent (the database was brought down abnormally and

requires crash recovery to be performed) then you may also see false errors in that case too.

The repair options of db2dart should only be done under the supervision of a Db2 Support analyst.

When targeting specific table spaces or tables, you have the choice to specify object identifiers on the

command line, or you can wait to be prompted for them.

53

Essential Tools: db2dart Common Options

• Inspect at the database (/DB), table space (/TS), or table (/T) level
• Default db2dart operation is a full database inspection

• Checks validity of meta-data structures, data page/row headers, etc.

• Does not verify the logical correctness of the data!

• Dump formatted table data in delimited ASCII format (/DDEL)
• LOBS are excluded

• Mark index object as invalid (/MI)
• Handy for damaged indexes that need to be marked for rebuilding

• Examples:
db2dart testdb

db2dart proddb /ts /tsi 4

db2dart sample /t /tsi 2 /oi 5

54

54

Essential Tools: INSPECT

• Online equivalent of the db2dart tool
• Runs in the engine, so very fast

• Makes use of prefetchers and buffer pools

• No formatting or repair options

• Different problem detection capability compared to db2dart

• Run “db2 ? inspect” for full syntax

• Creates a binary output file
• db2inspf tool is used to format the binary file

• Example:
db2 connect to testdb

db2 inspect check tablespace name ts1 results keep inspect.out

db2inspf ~/sqllib/db2dump/inspect.out inspect.fmt

55

Comparison of INSPECT and db2dart

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.trb.doc/doc/c002076

3.html

55

Essential Tools: db2ckbkp

• Primary purpose is to test the integrity of a backup image

• Use when a backup image appears to be corrupt

• May also run proactively whenever a backup is taken

• Can also be used to display meta-data stored within the backup image, e.g. can show the

storage paths associated with an automatic storage database

• Run “db2ckbkp” to see the various options

• Example:
db2ckbkp MYDB.0.db2inst.NODE0000.CATN0000.20180221223624.001

• For TSM backup images, use the VERIFY option of db2adutl

56

56

Physical Corruption

• Data is physically damaged. For example, a database page contains nothing

but zeroes (which is not allowed – a header and some other metadata are

required for every database page).

• Can be detected easily by running tools such as db2dart, INSPECT, or even

by a visual inspection (if it is known where the corruption may be located).

• A frequent symptom is page verification errors (CBIT or others) reported in

db2diag.log while reading the page from the disk.

• The root cause can vary: Db2 bugs (almost never for CBIT problems

though!), file system bugs, OS problems, HW issues, …

57

57

Logical Corruption

• Data is physically correct. However, there is a mismatch between what Db2

“thinks” the page contains (metadata) and the actual contents of the page.

• Typical examples: index page pointing to an incorrect root, an incorrect

number of data slots on a data page, etc.

• The failure only happens during runtime. No problems found during db2dart

or other inspections.

• The root cause is usually a Db2 bug. These kinds of problems usually cannot

be attributed to problems outside of Db2 (however, exceptions have been

noted ☺).

58

58

Physical Read Error Toleration

• When Db2 loads a page from the disk to the buffer pool, the page is validated.

• If the page is found to be invalid, Db2 will attempt to tolerate the error after

dumping diagnostic data.

• The data from the invalid page is not consumed and no harm has been caused

yet, so no reason to mark the database bad.

• This feature can be disabled by the DB2RESILIENCE registry variable.

Default: ON.

59

•Customers may experience unexpected Db2 outages

•These outages cause loss of business and inconvenience

•The goal is to reduce unexpected outages and increase data availability

Logical and Physical Read Error Toleration

Avoid business outages due to file container corruptions

Avoid business outages due to unexpected database read errors

59

Upon Detecting Physical Page Error

1. Create the usual FODC package (call stacks, etc...).

2. Terminate the application with SQL1655 (new SQL code). The current

operation fails, but the application can continue to use the same connection.

3. Log ADM6006E (admin log) with the page details.

4. In order to prevent diagnostic log flooding, limit the logging of the same error

(currently to once every five minutes).

5. Database remains accessible.

60

60

Logical Read Error Toleration

• For logical reads, consumers of buffer pool pages perform validation on

various internal structures that are stored in the page.

• If the page is found to be invalid, Db2 will attempt to tolerate the error after

dumping diagnostic data.

• If the page is not modified yet (not “dirty”), the page will be marked bad. In this

case the page in unloaded (“unfixed”) from the buffer pool and, if required,

reloaded again.

• This feature can be disabled by the DB2RESILIENCE registry variable.

Default: ON.

61

61

Upon Detecting Bad In-memory Page

1. Create the usual FODC package (call stacks, etc...).

2. Terminate the application with SQL1656 (another new SQL code, different

from the physical read error code). The current operation fails, but the

application can continue to use the same connection.

3. Log ADM6007E (admin log; different from the physical read error ADM code)

with the page details.

4. In order to prevent diagnostic log flooding, limit the logging of the same error

(currently to once every five minutes).

5. Database remains accessible.

62

62

Abort Signals/Exceptions

UNIX/Linux Signal IDs Description

most UNIX’s: SIGABRT(6)

HP-UX: SIGIOT(6)

Instance panic. Self induced by Db2 due to unrecoverable

problems. Typically associated with data (disk) corruption.

The instance shuts down.

Windows Exception Description

User Defined Exception (0xE0000002) Diagnostic info signal. Dumps diagnostic info for the failing

EDU. The instance shuts down during subsequent

processing.

63

•On UNIX, a signal can be sent to a Db2 process by issuing a “kill - <signal #>. Signals are defined in the “signals.h”
header file.

•For example, on AIX 5.3, the signal.h header file is located in /usr/include.sys/signal.h

•An extract of the signal.h header file is as follows:

#define SIGHUP 1 /* hangup, generated when terminal disconnects */

#define SIGINT 2 /* interrupt, generated from terminal special char */

#define SIGQUIT 3 /* (*) quit, generated from terminal special char */

#define SIGILL 4 /* (*) illegal instruction (not reset when caught)*/

#define SIGTRAP 5 /* (*) trace trap (not reset when caught) */

#define SIGABRT 6 /* (*) abort process */

#define SIGEMT 7 /* EMT intruction */

#define SIGFPE 8 /* (*) floating point exception */

#define SIGKILL 9 /* kill (cannot be caught or ignored) */

#define SIGBUS 10 /* (*) bus error (specification exception) */

….

….

• To send an abort signal (SIGABRT) to a process, issue a “kill -6 <pid>”.

• On Windows, use db2pd –stack to send “signals” to db2 processes/threads.

• WARNING: DO NOT randomly issue signals to a Db2 process unless directed to by Db2 Service.
Sending inappropriate signals can lead to database problems.

63

CORRUPTION EXERCISE

64

Scenario
$ db2 "connect to sample"

Database Connection Information

Database server = DB2/LINUXX8664 9.7.0

SQL authorization ID = DB2INST1

Local database alias = SAMPLE

$ db2 "create table t1 (i1 int, c2 char(250), c3 char(250), c4 char(250), c5 char(250))"

DB20000I The SQL command completed successfully.

$ db2 "import from 'dataFile01.del' of del messages /dev/null insert into t1"

Number of rows read = 99

Number of rows skipped = 0

Number of rows inserted = 99

Number of rows updated = 0

Number of rows rejected = 0

Number of rows committed = 99

$ db2 "create index i1 on t1 (i1,c2,c3,c4,c5)"

DB20000I The SQL command completed successfully.

$ db2 +c "create index i2 on t1 (i1,c3,c2,c4,c5)"

DB20000I The SQL command completed successfully.

65

65

Scenario (cont’d)

$ db2 +c "insert into t1 values"\

> "(1,'1','1','1','1'),"\

…

> "(25,'25','25','25','25')"

DB20000I The SQL command completed successfully.

$ db2 "rollback work"

DB20000I The SQL command completed successfully.

$ db2 "terminate“; db2stop; db2start

SQL1063N DB2START processing was successful.

$ db2 "connect to sample"

Database server = DB2/LINUXX8664 9.7.0

SQL authorization ID = DB2INST1

Local database alias = SAMPLE

$ db2 "delete from t1 where i1 >= 1000"

DB21034E The command was processed as an SQL statement because it was not a

valid Command Line Processor command. During SQL processing it returned:

SQL1034C The database is damaged. All applications processing the database

have been stopped. SQLSTATE=58031
66

66

Scope of Outage: Step 1

$ db2 list active databases

SQL1032N No start database manager command was issued. SQLSTATE=57019

$ db2nps 0

Node 0

UID PID PPID C STIME TTY TIME CMD

$ db2pd -edus

Unable to attach to database manager on partition 0.

Please ensure the following are true:

- db2start has been run for the partition.

Conclusion: The entire database manager is down. This is an instance abend
(not a database one). Will need to run db2start eventually.

We can use the same commands as in the Abend exercise:

67

67

Scope of Outage: Step 2 - DIAGPATH
$ db2 get dbm cfg | grep DIAGPATH

Diagnostic data directory path (DIAGPATH) = /home/db2inst1/sqllib/db2dump

$ ls -l /home/db2inst1/sqllib/db2dump

total 16580

-rw-r--r-- 1 db2inst1 db2iadm1 31672 Mar 27 12:51 35989563.000.locklist.txt

-rw-r--r-- 1 db2inst1 db2iadm1 31672 Mar 27 12:51 55676162.000.locklist.txt

-rw-r--r-- 1 db2inst1 db2iadm1 31672 Mar 27 12:51 85463469.000.locklist.txt

-rw-r--r-- 1 db2inst1 db2iadm1 31672 Mar 27 12:51 92542329.000.locklist.txt

-rw-r--r-- 1 db2inst1 db2iadm1 22830 Mar 27 12:51 9321.17.000.apm.bin

-rw-r--r-- 1 db2inst1 db2iadm1 8849752 Mar 27 12:51 9321.17.000.dump.bin

-rw-r--r-- 1 db2inst1 db2iadm1 969013 Mar 27 12:51 9321.17.000.stack.txt

-rw-r--r-- 1 db2inst1 db2iadm1 61208 Mar 27 12:51 9321.19.000.dump.bin

-rw-r--r-- 1 db2inst1 db2iadm1 58992 Mar 27 12:51 9321.22.000.dump.bin

-rw-r--r-- 1 db2inst1 db2iadm1 27839 Mar 27 12:51 9321.22.000.stack.txt

-rw-rw-rw- 1 db2inst1 db2iadm1 482720 Mar 27 12:51 db2diag.log

-rw-r----- 1 db2inst1 db2iadm1 6291312 Mar 27 12:50 db2eventlog.000

-rw-rw-rw- 1 db2inst1 db2iadm1 7229 Mar 27 12:51 db2inst1.nfy

drwxrwxr-t 2 db2inst1 db2iadm1 4096 Mar 27 11:46 events

drwxr-x--- 2 db2inst1 db2iadm1 4096 Mar 27 12:51 FODC_DBMarkedBad_2018-03-27-12.51.22.987481

drwxr-x--- 3 db2inst1 db2iadm1 4096 Mar 27 12:51 FODC_IndexError_2018-03-27-12.51.21.074640_9321_17_000

drwxr-x--- 4 db2inst1 db2iadm1 4096 Mar 27 12:51 FODC_Panic_2018-03-27-12.51.23.883825

drwxrwxr-t 2 db2inst1 db2iadm1 4096 Mar 27 11:41 stmmlog

Conclusion: The presence of “FODC_IndexError” is indicative of an index issue.

The other two “FODC” directories are a bit newer, and they were likely created as

the consequence of the index error.

68

68

Time of Outage

2018-03-27-12.51.04.267088-240 E23093E469 LEVEL: Event

PID : 9321 TID : 139769593980672PROC : db2sysc 0

INSTANCE: db2inst1 NODE : 000 DB : SAMPLE

APPHDL : 0-8 APPID: *LOCAL.DB2.120327165104

AUTHID : DB2INST1

EDUID : 26 EDUNAME: db2stmm (SAMPLE) 0

FUNCTION: DB2 UDB, Self tuning memory manager, stmmLog, probe:1008

DATA #1 : <preformatted>

Starting STMM log from file number 0

2018-03-27-12.51.20.996688-240 I23563E543 LEVEL: Severe

PID : 9321 TID : 139769631729408PROC : db2sysc 0

INSTANCE: db2inst1 NODE : 000 DB : SAMPLE

APPHDL : 0-7 APPID: *LOCAL.db2inst1.120327165102

AUTHID : DB2INST1

EDUID : 17 EDUNAME: db2agent (SAMPLE) 0

FUNCTION: DB2 UDB, index manager, sqliCleanupEmptyLeaf, probe:1213

RETCODE : ZRC=0x87090054=-2029453228=SQLI_PRG_ERR "Program error"

DIA8575C An index manager programming error occurred.

Use the same technique as in the Abend exercise:

It appears that the first relevant message is the sqliCleanupEmptyLeaf error

reported by a db2agent with the EDUID of 17.
69

69

What Happened: Step 1

$ ls -l FODC_IndexError_2018-03-27-12.51.21.074640_9321_17_000

total 2292

-rw-r--r-- 1 db2inst1 db2iadm1 31672 Mar 27 12:51 72532410.000.locklist.txt

-rw-r--r-- 1 db2inst1 db2iadm1 227682 Mar 27 12:51 9321.17.000.apm.bin

-rw-r--r-- 1 db2inst1 db2iadm1 2028000 Mar 27 12:51 9321.17.000.dump.bin

-rw-r--r-- 1 db2inst1 db2iadm1 29541 Mar 27 12:51 9321.17.000.stack.txt

drwxr-xr-x 2 db2inst1 db2iadm1 4096 Mar 27 12:51 DART0000

-rwxr-xr-x 1 db2inst1 db2iadm1 151 Mar 27 12:51 db2cos_indexerror_long

-rwxr-xr-x 1 db2inst1 db2iadm1 1408 Mar 27 12:51 db2cos_indexerror_short

Examine the “FODC_IndexError” path, locate the trap file for EDU 17:

Also note the presence of the “DART0000” directory. This path contains

automatic dumps of pages and structures pertinent to the outage. This

information is extremely valuable to users with a deep understanding of Db2’s

data layout.

70

70

What Happened: Step 2

$ cat 9321.17.000.stack.txt | c++filt > 9321.17.000.stack.txt.filtered

$ vi 9321.17.000.stack.txt.filtered

DB2 build information: DB2 v9.7.0.0 s090521 SQL09070

timestamp: 2018-03-27-12.51.21.221030

instance name: db2inst1.000

EDU name : db2agent (SAMPLE) 0

EDU ID : 17

Signal #12

…

<StackTrace>

---FUNC-ADDR---- ------FUNCTION + OFFSET------

00007F1EAFAE6109 ossDumpStackTraceEx + 0x01e5

00007F1EAFAE0F2A OSSTrapFile::dumpEx(unsigned long, int, siginfo*, void*, unsigned long) + 0x00cc

00007F1EB25032A9 sqlo_trce + 0x02eb

00007F1EB254473A sqloDumpDiagInfoHandler + 0x00e0

…

00007F1EB4F38936 pthread_kill + 0x0036

00007F1EB25442A9 sqloDumpEDU + 0x0045

00007F1EB186FD99 sqldDumpContext(sqeBsuEdu*, int, int, int, int, int, char const*, …) + 0x068f

00007F1EB134DB69 sqlidelk(sqeAgent*, SQLD_IXCB*, SQLI_IXPCR*, SQLD_KEY*, SQLZ_RID, …) + 0x09b3

00007F1EB0CB235C sqldKeyDelete(SQLD_DFM_WORK*, SQLD_TCB*, SQLD_TDATAREC*, SQLZ_RID, …) + 0x0478

00007F1EB0CB1237 sqldRowDelete(sqeAgent*, SQLD_CCB*, unsigned long) + 0x039f

00007F1EB125091E sqlridel(sqlrr_cb*) + 0x00c6

Examine the contents of the trap file, especially the signal/calling stack.
Optionally, use “c++filt” to demangle the names on the stack.

71

71

What Happened: Step 3

So far the investigation has been quite similar to Abend:

1. Trapped when deleting from table T1 – possibly reproducible?

2. An instance-wide trap.

3. Signal #12 (SIGUSR2) means a self-inflicted death.

4. The most recent routine on the stack is sqlidelk – perhaps something to do

with deleting an index key?

5. The first db2diag.log message is from routine sqliCleanupEmptyLeaf –

definitely an index key delete!

6. The EDU name is “db2agent”.

PRETTY GOOD DESCRIPTION => search for existing APARs!

72

72

What Happened: Step 4

Search for Db2 APARs at IBM Support Portal

73

Kewords used: “sqliCleanupEmptyLeaf sqlidelk”

IC77761: FUNCTION: DB2 UDB, INDEX MANAGER, SQLICLEANUPEMPTYLEAF, PROBE:12 13 RETCODE : ZRC=0X87090054=-

2029453228=SQLI_PRG_ERR "PROGRAM ER

Error description

a Db2 instance can encounter a programming error message during

an index update operation.

Possible stack :

pthread_kill

sqloDumpEDU

sqldDumpContext

sqlidelk

sqlidelk

sqldUpdateIndexes

sqlriupd

db2diag.log:

2011-06-15-14.12.56.240728+120 I103233A541 LEVEL: Severe

PID : 11075798 TID : 22950 PROC : db2sysc 0

INSTANCE: db2inst1 NODE : 000 DB : SAMPLE

APPHDL : 0-6656 APPID: *LOCAL.SAMPLE.110615080414

AUTHID : db2inst1

EDUID : 22950 EDUNAME: db2agent (SAMPLE) 0

FUNCTION: DB2 UDB, index manager, sqliCleanupEmptyLeaf,

probe:1213

RETCODE : ZRC=0x87090054=-2029453228=SQLI_PRG_ERR "Program

Local fix

To avoid hitting problem, the customer should COMMIT any CREATE

INDEX statements immediately after the CREATE INDEX statement

has completed, instead of including the CREATE INDEX as a part

73

of a larger transaction.

73

BUT WAIT! LIMITED TIME OFFER!

$ db2dart /H

db2dart - Database Analysis Tool

The db2dart command analyses databases, table spaces and tables.

The primary function of this command is to examine databases for

architectural correctness, and to report any encountered errors.

Syntax:

db2dart <database name> [action] [options ...]

Repair actions:

Make sure the database is offline for these actions.

/MI Marks index object as invalid.

(Database must be offline. See notes 1, 5)

This error is reproducible. An attempt to access the T1 table may result

in another outage of the same kind. In many index or data corruption

cases, we have an option to repair the object!

The BIG ONE: db2dart /MI

74

74

Repair: What?

2018-03-27-12.51.21.188119-240 I46737E568 LEVEL: Severe

PID : 9321 TID : 139769631729408PROC : db2sysc 0

INSTANCE: db2inst1 NODE : 000 DB : SAMPLE

APPHDL : 0-7 APPID: *LOCAL.db2inst1.120327165102

AUTHID : DB2INST1

EDUID : 17 EDUNAME: db2agent (SAMPLE) 0

FUNCTION: DB2 UDB, trace services, sqlt_logerr_string (secondary logging fu, probe:0

DATA #2 : String, 108 bytes

Index object = {TBSPACEID=<3>; OBJECTID=<5>; OBJECTTYPE=<INX>} Parent object = {TBSPACEID=<3>; OBJECTID=<5>}

…

2018-03-27-12.51.23.784098-240 I465004E2315 LEVEL: Severe

PID : 9321 TID : 139769610757888PROC : db2sysc 0

INSTANCE: db2inst1 NODE : 000

EDUID : 22 EDUNAME: db2pclnr (SAMPLE) 0

FUNCTION: DB2 UDB, buffer pool services, sqlbClnrAsyncWriteSetup, probe:300

DATA #1 : Buffer page descriptor, PD_TYPE_SQLB_BPD, 152 bytes

Pagekey: {pool:3;obj:5;type:1} PPNum:3

Time to go back to db2diag.log. We need to find the object ID and table space ID

of the damaged object (a good search string is “obj”):

It appears that we are dealing with object 5 in table space 3.

75

75

Repair: Anything Else?

$ db2dart sample

…

Table inspection start: DB2INST1.T1

Data inspection phase start. Data obj: 5 In pool: 3

Data inspection phase end.

Index inspection phase start. Index obj: 5 In pool: 3

Index inspection phase start. Index obj: 5 In pool: 3

Error: Bad Index Token (22)

…

DB2DART Processing completed with error!

In the case of HW failures, it is always good to check if there are any more
corruptions present. A full db2dart scan is the best option, but this is time

consuming. Alternatively, /TS or /T switch can be used to limit the db2dart scope

to a table space or table, respectively.

Conclusion: In our case, index 5 in pool 3 is the only corrupted object.

76

76

Repair: JUST DO IT!
$ db2dart sample /MI /OI 5 /TSI 3

…

Modification for page (obj rel 0, pool rel 704) of pool ID (3) obj ID (5), written out to disk
successfully.

$ db2start; db2 “connect to sample”; db2 “select count(*) from T1”

…

1

99

1 record(s) selected.

$ vi db2diag.log

…

2018-03-27-14.46.37.890316-240 E496451E488 LEVEL: Warning

PID : 14147 TID : 139799037994752PROC : db2sysc 0

INSTANCE: db2inst1 NODE : 000 DB : SAMPLE

APPHDL : 0-7 APPID: *LOCAL.db2inst1.120327184632

AUTHID : DB2INST1

EDUID : 17 EDUNAME: db2agent (SAMPLE) 0

FUNCTION: DB2 UDB, data management, sqldEndIndexCreate, probe:1

MESSAGE : ADM5542W Indexes on table "DB2INST1.T1" are successfully rebuilt.

77

77

HANG/PERFORMANCE PROBLEMS

78

What Constitutes a Hang?

• A hang is a situation in which the database stops responding to incoming

requests, or stops processing existing requests

• Typically happens due to a shared resource (lock, latch, … – see explanation

on the subsequent slides) being held by somebody/something other than the

requestor

79

• Temporary: A small “glitch” causing processing to

slow down temporarily, often indistinguishable from

a performance problem

• Permanent: Multiple execution threads competing

about the same set of resources, a kind of a

“reversed standoff ☺”

79

Performance Problem?

• Execution slower than usual, expected, or previously established

• Investigating performance problems is mostly identical to investigating hangs

80

Q: What is the main difference between a hang and a

performance problem?

A: If experiencing a performance issue, things will eventually

get done. Slowly but surely ☺

•A frequent mistake is to “feel” that execution should be faster. Rather than guessing, it is

important to establish performance baselines and targets. Careful documentation and planning of

system and configuration changes never hurts, either. A great idea is to determine and document

query execution plans for the baseline.

80

All About Latching

• What is a latch?

• When multiple processes or threads are trying to access the same shared information at

the same time, it is necessary to control access to that information

• This is done via an internal mechanism called a latch. The way it works is that one EDU

can acquire a latch on a particular resource, and if another EDU also wants to access that

same information, the other EDU must wait until the latch is freed by the first EDU before

access is allowed.

• In IBM Db2 pureScale ®, a cross-member latch which requires both the global lock portion

and the local latch portion is called lotch (abbreviated from “lock or latch”)

• What is a deadlatch?

• A type of a hang (usually defect-related) caused by resource contention involving latches.

An EDU is asking for a latch that is already owned, and the owner is either unable to make

progress, or is waiting for a resource owned by the current EDU. Remember the standoff?

81

Think of a latch as a low level lock within Db2.

81

Diagnostic Data

• The difficultly with hang/performance problems is that it is critical to generate

diagnostic information while the problem is happening

• Looking at a hang/performance issue in the post-mortem sense without

collecting information during the problem’s occurrence will almost always

lead to a dead end

• To make matters more complicated, sometimes a “Db2 problem” is in fact a

problem outside of Db2. It could be:

• Application issues

• Network problems

• Operating system/hardware glitches

• Etc...

82

82

Top-Down Approach

• Arguably the most critical part is to narrow down the scope of occurrence. One

of the many possible approaches is:

1. Examine the operating system first. Look for excessive I/O, network traffic,

errors in the system error logs, …

2. Look at the Db2 instance scope. Try to determine if the problem is affecting

the entire instance. Are instance level commands working well?

3. Examine the Db2 database scope. Problems with all databases? Or some?

4. EDU or application scope. All applications affected? Or some? What about

non-agent EDUs such as prefetchers or page cleaners?

83

83

Operating System Scope

Command What does this tell you?

Log into the system via ssh, telnet, etc…,

and pick any OS command such as ls, ps, …
If user login and/or OS commands take a long

time to run, the problem is likely system-wide,

i.e. not a Db2 problem.

vmstat 2 10 Any system issues, e.g. high CPU or paging?

iostat 2 10 Any busy storage devices? Note: iostat

might not be pre-installed with the OS.

84

$ vmstat 2 2

procs -----------memory---------- ---swap-- -----io---- -system-- -----cpu------

r b swpd free buff cache si so bi bo in cs us sy id wa st

3 0 0 3337884 12752 369740 0 0 702 23 116 150 6 3 90 1 0

0 0 0 3344420 12752 369800 0 0 0 0 80 58 1 1 99 0 0

“run”

queue

“blocked”

queue

CPU

stats

r: The number of processes waiting for run time.

b: The number of processes in uninterruptible sleep.

CPU

These are percentages of total CPU time.

us: Time spent running non-kernel code. (user time, including nice time)

sy: Time spent running kernel code. (system time)

id: Time spent idle. Prior to Linux 2.5.41, this includes IO-wait time.

wa: Time spent waiting for IO. Prior to Linux 2.5.41, included in idle.

st: Time stolen from a virtual machine. Prior to Linux 2.6.11, unknown.

84

Instance Scope

Command What does this tell you?

db2 get dbm cfg

db2 get db cfg for <dbname>

These two commands are simple and acquire

very few (if any) latches. Useful in narrowing

down the scope.

db2 list active databases A quick way to tell if the instance is hanging.

db2 list applications show detail Any application activity reported?

db2pd -edus Especially check the CPU stats to see if any

EDUs show unusually large counters.

85

Q: Why are we suggesting the “old” snapshot interface here?

A: Unlike the new and more capable MON_GET.* table functions, the snapshot interface

uses an infrastructure which runs “somewhat” outside of the Db2 kernel. The advantage

is that no database connection is needed for these instance-level commands.

85

Database Scope

86

Command What does this tell you?

db2 connect to <dbname> Combined with db2_all as necessary, this is

the simplest way to confirm database

connectivity.

MON_GET_DATABASE_DETAILS A more comprehensive way to look up

database-level statistics.

db2 get snapshot for database on

<dbname>

The simpler, “snapshot-way”, of achieving the

same.

Having connected to your database, verify that

you can execute queries from the command

line.

Sometimes the problem may only be specific to

an application. By verifying if things are working

from the CLP you can narrow down if the

problem is with an application or with the

database.

86

Application/EDU Scope

Command What does this tell you?

Do Db2 snapshots complete? For example:

db2 get snapshot for applications

on <dbname>

If a snapshot hangs, it likely means the problem

is an instance-wide hang, possibly due to

latching issues.

If a snapshot completes, then the problem may

be more specific to a certain database or

application connection and is less likely to be

latching related.

Are snapshots showing “movement”? Get more

than one snapshot with some time in between,

say one minute apart. Look for changes (deltas)

between the snapshots.

If read/written or other signs of activity by

comparing two snapshots, then you may be

dealing with a performance problem instead of

a real hang issue.

87

87

The Big One – Internals

• After we have established that this is not an OS hang, a network outage, i.e.

we are most likely dealing with a Db2 or an application issue, it is time to

collect the most important pieces:

1. Call stacks

2. Data for active EDUs

3. Traces, including performance traces and/or profiling information

4. Lock information*

5. Access plans*

* out of scope for this presentation

88

88

Call Stacks

• A call stack is a snapshot for the state of a Db2 process at the time for when

the stack dump was captured. Call stack files are also known as “trap files”

(although in a slightly different context), "stack trace backs“, or “stacks”.

• Generated automatically if processing cannot continue because of an

exception, or for serviceability reasons by Db2. Can also be generated

manually by the user (e.g. hangs, performance issues).

• Contains the function sequence that was running when the error occurred.

• Also contains information about the state of the process when the signal or

exception was caught, e.g. contents of registers, disassembly of code around

the failing line.

89

89

Call Stack Signals/Exceptions

UNIX/Linux Signal IDs Description

AIX: SIGUSR1(30), SIGUSR2(31)

Linux: SIGUSR1(10), SIGUSR2(12)

HP-UX: SIGUSR1(16), SIGUSR2(17)

Solaris: SIGUSR1(16), SIGUSR2(17)

Diagnostic info signals. Used to generate diagnostic data for a single

EDU. Unused in older releases. The instance stays up.

AIX: SIGPRE(36)

Linux: SIGURG(23)

HP-UX: SIGURG(29)

Solaris: SIGURG(21)

Diagnostic info signal. Dumps diagnostic info for the entire instance

(Db2 9.7+) or for a single process (before Db2 9.7). Used when

collecting data for hangs/performance issues. The instance stays up.

Windows Exception Description

User Defined Exception (0xE0000002) Diagnostic info signal. Dumps diagnostic info for the failing EDU. The

instance stays up and running.

Exception Not Present A Db2 engine backdoor thread is used to dump diagnostic info for the

entire instance. Used when collecting data for hangs/performance

issues. The instance remains up and running.

90

•On UNIX, a signal can be sent to a Db2 process by issuing a “kill - <signal #>. Signals are defined in the “signals.h”
header file.

•For example, on AIX 5.3, the signal.h header file is located in /usr/include.sys/signal.h

•An extract of the signal.h header file is as follows:

#define SIGHUP 1 /* hangup, generated when terminal disconnects */

#define SIGINT 2 /* interrupt, generated from terminal special char */

#define SIGQUIT 3 /* (*) quit, generated from terminal special char */

#define SIGILL 4 /* (*) illegal instruction (not reset when caught)*/

#define SIGTRAP 5 /* (*) trace trap (not reset when caught) */

#define SIGABRT 6 /* (*) abort process */

#define SIGEMT 7 /* EMT intruction */

#define SIGFPE 8 /* (*) floating point exception */

#define SIGKILL 9 /* kill (cannot be caught or ignored) */

#define SIGBUS 10 /* (*) bus error (specification exception) */

….

….

• To send an abort signal (SIGABRT) to a process, issue a “kill -6 <pid>”.

• On Windows, use db2pd –stack to send “signals” to db2 processes/threads.

• WARNING: DO NOT randomly issue signals to a Db2 process unless directed to by Db2 Service.
Sending inappropriate signals can lead to database problems.

90

Call Stacks – Naming Convention

Type of File Name

call stack (UNIX/Linux) <pid>.<eduid>.<node>.stack.txt

call stack (Windows) <pid>.<tid>.stack.bin

91

• On UNIX/Linux, the file is text-based

• On Windows, the file is binary. In order to translate the binary file into text, a
formatting utility (db2xprt) and debug symbol files are required, both of

which are shipped with the product.

Stacks, if existing, will always reside in the Db2 diagnostic directory (DIAGPATH).

91

Call Stack Contents

• Build date

• Version Number

• Time of the dump

• Signal or Exception which generated the dump

• Process & thread ID

• Loaded libraries (common referred to as the “map”)

• Address of signal handlers

• Registry dumps

• Call Stack – a detailed call stack

• A dump of the OSS Memory sets

• Latch information for the EDU

• Locks being waited on

• Assembly code dump, …

92

92

Call Stack Contents – Stuff That Matters

93

<StackTrace>

-----FUNC-ADDR---- ------FUNCTION + OFFSET------

0x00007FD83298A9CB sqlplMakeNewRequestSD + 0x123b

0x00007FD8328D9D85 sqlpUpgradeLock + 0x1125

0x00007FD83280DCAE sqlpValLotch::sqlpValUpgradeLock + 0x015e

0x00007FD83280968A sqlpValLotch::getSDComplex + 0x058a

0x00007FD82C71FE24 sqlpValLotch::getSD + 0x0244

0x00007FD82D084254 sqlbFindAndLotchExtent + 0x04a4

0x00007FD82D1583DF sqlbCommonWriteSetup + 0x044f

0x00007FD82D04C77D sqlbClnrAsyncWriteSetup + 0x039d

</StackTrace>

<LatchInformation>

Holding Latch type: (SQLO_LT_SQLB_POOL_CB__readLotch) - Address: (0x7fd6c101f8c0), Line: 3067, File: sqlbpacc.C

HoldCount: 1

</LatchInformation>

<LockName>

Waiting on lock name: 1F001200000000000000000076 SQLP_VALLOCK (SQLP_EM_NAME)

</LockName>

The following information is critical to solving most hangs, and useful for performance issues, too:

1. Stack Trace

2. Latch Information

3. Lock Waited On

A good idea is to run c++filt (not a Db2 component, this is part of the C compiler) to demangle the stack

symbols.

Example:

$ c++filt -p < 48347.106.001.stack.txt > 48347.106.001.stack.filtered.txt

93

94

Signal #11

0 strcpy

1 sqlbObjFileName

2 sqlbSMSOpenContainer

3 sqlbSMSGetOpenInfo

4 sqlbSMSDeleteObject

5 sqldDropObj

6 sqldDropTable

7 sqlbPFPrefetcherEntryPoint

8 sqloCreateEDU

9 sqloRunGDS

10 sqloInitEDUServices

11 sqloRunInstance

12 DB2main

13 main

Function on top of stack

F
u

n
ct

io
n
 c

al
l

se
q
u
en

ce

Potential problematic function

to begin searching on.

How to read a call stack:

Call Stack

94

NOTE: In general, you would want to search for the function on the top of the stack.

•In this example, the function strcpy() is a C library function and is less likely to by the culprit (not

impossible).

•The most likely culprit is the caller to the strcpy() function. The strcpy() function may just be the victim.

Generate Call Stacks – Db2 Ways

• All platforms:

95

db2pd –stack all (single partition)

rah db2pd –alldbp –stack all (multiple)

• UNIX/Linux Alternatives (if db2pd is hanging):

AIX: kill -PRE <db2sysc PID>

Solaris, Linux, HP: kill –URG <db2sysc PID>

• Windows Alternatives (if db2pd is hanging):

db2bddbg -d db2ntDumpTid “<path>” -1 <filename>

db2nstck

Note:

• On AIX for example, a kill -36 is equivalent to a kill – SIGPRE as defined in the signal.h file on AIX.

• Each UNIX platform will haves it own signals defined.

95

Generate Call Stacks – Native Ways

• The aforementioned “Db2 way” of generating call stacks is always preferred.

For completeness, call stacks can be generated using other methods, too:

• Debuggers

• gdb, dbx (both multi-platform)

• kdb (AIX), adb (Solaris), WinDbg (Windows)

• OS Commands

• Linux: cat /proc/<pid>/stack, cat /proc/<pid>/task/<thread_id>/stack

• AIX: procstack

• Solaris: pstack

• Windows: adplus, procstack

96

The Db2 ways of obtaining call stacks are always preferred as these methods produce much more

information than the native OS methods. However, sometimes it is useful to learn these approaches in

case even the most fundamental Db2 commands such as “db2pd” become non-responsive.

96

Call Stack Analysis: analyzestack

$ ~/sqllib/pd/analyzestack -i .

<...>

Slurping 19 trap files ..

<...>

Please check the following files:

=======================================

StackAnalysis.out

Analysis Complete ...

97

• At this point we have multiple call stack files. Each file contains information pertinent to one

EDU. It is a one time snapshot of what was happening in the EDU while the stack was

generated.

• We need to take a look at each individual call stack. This could be a problem if there are

thousands of EDUs running on the system.

• SOLUTION: analyzestack

Note that analyzestack was first shipped in 9.7 Fix Pack 5. The tool is located under sqllib/pd. Frequently used
options:

-i directory | file_list

Input can be a directory where trap files exist or list of trap

files or a single trap files. You can use wildcard characters

for the file list (but please remember to enclose the file list

in quotes if you use them) or you can use the command as -i

<file1> -i <file2> -i <file3> as well.

-l [output file]

Do latch analysis on the files. Output filename is optional. If

not provided it defaults to "LatchAnalysis.out".

-m1 timestamp1 -m2 timestamp2

Analyze stacks for timestamps between <timestamp1> and

<timestamp2> (both inclusive). The timestamps can be of format

"yyyy-mm", "yyyy-mm-dd", "yyyy-mm-dd-hh" or "yyyy-mm-dd-hh.min"

or "yyyy-mm-dd-hh.min.sec".

-d depth

Provide the number of functions to be compared in stacks (

Current max is: 100 and default is 40).

97

StackAnalysis.out

Stack:

======================

0x00007F0F6184721D _Z16sqlbClnrFindWorkP12SQLB_CLNR_CB + 0x2e22

0x00007F0F6184BBF4 _Z18sqlbClnrEntryPointP12sqbPgClnrEdu + 0x026a

0x00007F0F6185D8A0 _ZN12sqbPgClnrEdu6RunEDUEv + 0x00b8

0x00007F0F7794E306 _ZN9sqzEDUObj9EDUDriverEv + 0x0232

0x00007F0F7794E0C5 _Z10sqlzRunEDUPcj + 0x003c

0x00007F0F74670336 sqloEDUEntry + 0x0c7d

Summary:

Found in 26 stacks of a total of 123 stacks in 123 files

Found in:

./25228.100.001.stack.txt -- db2pclnr(TESTDB) -- 2018-08-21-11.49.21.966490(Signal #10)

./25228.75.001.stack.txt -- db2pclnr(TESTDB) -- 2018-08-21-11.49.21.970320(Signal #10)

<...etc...>

98

• The output is a frequential analysis of individual stacks, grouped by stack patterns, e.g.:

Produced by “analyzestack –i <dir_name>”

98

LatchAnalysis.out

===

******** LATCHWAIT DETECTED (#1) ***********

Printing LatchWait information

===

<<<< Holder Information (Address = 0x7f56a17f07e0) >>>>

File Information:

Line: 359, File: sqlpgResSpace.C HoldCount: 1

PID(s):

233 (./63809.233.000.stack.txt) -- Line: 359, File: sqlpgResSpace.C HoldCount: 1 (SQLO_LT_SQLP_DBCB__add_logspace_sem)

Agent Type: db2agent (DTW)

*** Stack ***

Timestamp: 2018-03-28-10.57.34.408457

0x00007F5CBECDAE1F sqloWaitEDUWaitPost + 0x03bf

0x00007F5CB98EC1E3 _Z19sqlbCastoutForFlushP16SQLB_OBJECT_DESCjtP9SQLP_LSN8P22SQLB_OBJECT_PAGE_RANGEP12SQLB_GLOBALS + 0x0963

0x00007F5CB98EB012 _Z9sqlbFlushP9SQLP_LSN8jtP12SQLB_GLOBALS + 0x04c2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

<<<<   Waiter Information (Address = 0x7f56a17f07e0)  >>>> 

TOTAL WAITERS >> 71

<...etc...>

99

• A sorted overview of latch holders and waiters, e.g.:

Produced by “analyzestack –i <dir_name> –l” (that is, lower case L)

99



Data for Active EDUs

db2pd –edus running EDUs

db2pd –latches acquired latches

db2pd –locks database locks (not latches!)

db2pd –wlocks database locks being waited on (agent-level)

db2pd –applications active applications

db2pd –transactions running transactions

db2pd –dynamic running SQL (Dynamic Cache) 

db2pd –dbcfg DB CFG (useful during hangs)

db2pd –dbmcfg DBM CFG (likewise)

db2level obviously ☺

db2set –all never hurts

100

If a database hang is suspected, the goal is to avoid running commands that require a database connection. 

Depending on the type of a hang, such commands are likely to hang, too.

100



Db2 Trace Facility

• In problem determination it is sometimes very useful to have information on 
what was occurring on the system during the actual time of failure. A Db2 trace 
provides information on:

• what functional calls were made (most recent at bottom of output),

• the actual code path used, 

• and sometimes even the data being manipulated at each point within the function. 

NOTE: We do not expect customers to analyze a trace. The following slides 
are for informational purposes only.

101

•Db2 traces are invoked by issuing the db2trc command from an operating system command prompt.  

•When invoked, trace  points within the Db2 source will 'fire' during runtime. 

•The firing of each trace point causes information such as the location within the code, error codes, return 

codes, and certain variables to be written to a buffer.  The size of the buffer is specified by the user that 

started the trace.  

•The buffer is circular, meaning that once the trace utility has reached the bottom of the  buffer it will 

wrap back up to the top.  This option can be controlled of course.

•db2trc allows for administration of the facility and parsing and formatting of the trace dump files. 

•You must reproduce the problem and it will affect performance.

101



Trace: Invocation

db2trc on –l <buffer_size> -t

<recreate the problem> 

db2trc dmp <dmpfile> 

db2trc off

db2trc flw <dmpfile> <flwfile>

db2trc fmt <dmpfile> <fmtfile>

102

db2trc on –l <buffer_size> –apphdl <apphdl> (up to 16 apphandles), OR

db2trc on –l <buffer_size> –appid <applid>  (up to 12 application IDs)

<recreate the problem> 

db2trc dmp <dmpfile> 

db2trc off

db2trc flw <dmpfile> <flwfile>

db2trc fmt <dmpfile> <fmtfile>

db2trc das on –l 128M

<recreate the problem>

db2trc das dmp <dmpfile>

db2trc das off 

db2trc flw <dmpfile> <flwfile>

db2trc fmt <dmpfile> <fmtfile>

A Db2 trace can be initiated by issuing the following commands:

A trace of the Db2 Admin Server is called a DAS trace:

Tracing of specific application handles or application IDs:

-l [bufferSize]

This option specifies the size and behavior of the trace buffer. -l specifies that the last trace records 

are retained (that is, the first records are overwritten when the buffer is full). The buffer size can 

be specified in either bytes or megabytes. To specify the buffer size in megabytes, add the 

character M | m to the buffer size. For example, to start db2trc with a 4–megabyte buffer: db2trc 

on -l 4m The default and maximum trace buffer sizes vary by platform. The minimum buffer size 

is 1 MB. The buffer size must be a power of 2.

[-t]

Include timestamps.

102



Trace: Flow (FLW)

308986 sqleProcessSCoordRequest entry [eduid 37 eduname db2agent]

310069 | sqlpParallelRecovery entry [eduid 37 eduname db2agent]

<...lots of other calls here...>

316955 | sqlpParallelRecovery exit [rc = SQLB_EMP_MAP_INFO_NOT_FOUND]

317046 sqleProcessSCoordRequest exit

103

- Unique trace ID. Increasing order, trace always starts with 1.

- Db2 function called. Name chosen by Db2 developers, often self-explanatory.

- Specific place in function. Could be “entry”, “exit”, “probe number”, “marker”, …

- Db2 “thread” (EDU) ID and name. Matches the EDU ID and name in db2diag.log.

- Return code. A good string to search for in Db2 APARs.

FLW provides a visual representation of which Db2 routines were called and by whom, their return 

code, markers, and probe points. The trace IDs are not sequential (i.e. contain “holes”) because 

of context switching, i.e. EDU “A” may own entries 1 and 3, but EDU “B” running in parallel will 

own 2 and 4.

EDU is a Db2 term for “thread”. Stands for “Engine Dispatchable Unit”.

103



Trace: Format (FMT)

316955 exit DB2 UDB recovery manager sqlpParallelRecovery fnc (2.3.94.48.0) pid 14925 tid

46912874998080 cpid 14546 node 0 rc = 0x8402001B =

-2080243685 = SQLB_EMP_MAP_INFO_NOT_FOUND

316956 entry DB2 UDB base sys utilities sqleSubCoordTerm fnc (1.3.5.1051.0) pid 14925 tid

46912874998080 cpid 14546 node 0 eduid 37 eduname

db2agent

104

- Unique trace ID. Matches the ID in FLW.

- Specific place in function. Could be “entry”, “exit”, “probe number”, “marker”, …

- Db2 area, component, and function called. Note the unique “IP address”.

- Process/thread/EDU/Node ID, EDU name. Also could contain timestamp, etc…

- Return code. Same as in FLW.

FMT provides additional detail about individual trace entries. Unlike FLW, the entries are perfectly 
sequential and ordered by time. When timestamps are present (db2trc –t), these entries could 

be used for performance measurements. Because of the aforementioned context switching, extra 

attention needs to be paid to EDU which owns the trace entry of interest.

104



Trace: Print Call Stack

pid = 14925 tid = 46912874998080 node = 0

308986 sqleProcessSCoordRequest entry [eduid 37 eduname db2agent]

310069 | sqlpParallelRecovery entry [eduid 37 eduname db2agent]

314023 | | sqlpPRecReadLog data [probe 1250]

314027 | | | sqlprProcDPSrec data [probe 430]

314028 | | | | sqlpRecDbRedo entry [eduid 37 eduname db2agent]

314030 | | | | | sqldmrdo data [probe 0]

314031 | | | | | | sqldomRedo entry [eduid 37 eduname db2agent]

314032 | | | | | | | sqldRedoFastTruncTable entry [eduid 37 eduname db2agent]

105

If you take a trace and only consider the initial entry for each routine, you will 

get a “call stack” – the perfectly ordered sequence of internal Db2 calls (try 
db2trc print -stack <traceid> <flwfile>).

105



Performance Trace

$ db2trc on -perfcount -t

<…run your scenario…>

$ db2trc dmp trace.dmp

$ db2trc off

$ db2trc perffmt trace.dmp trace.perfmt

$ sort -k2nr trace.perfmt > trace.perfmt.sorted

$ vi trace.perfmt.sorted

1         15.725198000 sqlrr_execimmd

1         15.725046000 sqlrr_execute_immed

1         15.702721000 sqlriSectInvoke

524288         11.086911000 sqlrinsr

524288         10.367470000 sqldRowInsert

262145          8.946307000 sqlriisr

106

A great way to “profile” what is happening in Db2. The first column denotes the 

number of executions, the second column is the total time (in seconds) spent in 

the routine.

106



Trace: General Techniques

• Search for error return codes. For example, if we are hitting SQL1032, try searching 
for -1032.

• Search for pdLog and or sqlt_logerr_zrc, as this points to where information was 
written to the db2diag.log file and looking above this point might help find the error.

• Try searching bottom up. The trace captures information in the order it occurs, and if 
the error happens after some execution time, that means the error will be at the 
bottom (or at least close to).

• Look for trace points where the trace shows hung processes or threads. These can 
be identified by no return codes or obvious function exits.

107

107



Trace Empty?

AIX: SIGGRANT(60)

Linux: SIGPROF(27)

HP: SIGPROF(21)

Solaris: SIGPROF(29) 

Initialize flags for the trace facility. The instance stays up.

108

• When collecting trace to investigate a hang on UNIX/Linux, it is possible that a process may 

not be logging information into the trace even though trace is on!

• This usually occurs because the hanging EDU has never reached a point where Db2 Trace 

gets initialized (usually at the entry/exit point of most Db2 routines). In other words, the EDU is 

stuck inside one routine.

• To force the process to go through the trace initialization, you can send a signal to the process 

while the trace is turned on:

• The signal handler will force the process to go through the trace init routines and now the 

process will be tracing.

• Another trick for hang problems and db2trc is that if new commands are hanging, try db2trc

with the –i option, in which case the trace buffer will not wrap.

•If the process is currently in a codepath (such as a loop) that does not trip over the trace initialization 

function then the process will not be logging trace entries.

•Sometimes for hang cases, other database activity ends up filling up the trace buffer and wrapping past 

the “good stuff” that you want to see. By using –i option on the trace, it will trace all the activity until the 

trace buffer is full and then it will NOT wrap.  This is okay for hang cases because you are only interested 

in the initial codepath that leads into a hang.

108



Catch-All: db2fodc

• All of the aforementioned techniques can be summarized by one word: 
db2fodc

• db2fodc is an executable shipped with Db2 which will perform the required 

data collection automatically

• It is advisable to use db2fodc whenever possible:

• IBM personnel is familiar with the output data format produced by this tool

• Another reason is that it is possible to automate parsing/analysis of the output

Note: db2fodc cannot be used if an non-Db2 problem is suspected

109

109



FODC: First Occurrence Data Collection

• Automatic FODC – FODC performed by Db2 automatically when an outage or 

error condition is detected.

• Manual FODC – First Occurrence Data Collection invoked manually by the 

end user due to a particular symptom.

• FODC package – a set of diagnostic information collected during the manual 

or automatic FODC invocation.

110

When an outage occurs and automatic first occurrence data capture (FODC) is enabled, data is collected 

based on symptoms. The data collected is specific to what is needed to diagnose the outage. 

For cases that cannot be determined automatically, e.g. hang or performance issue, data can be collected 

manually by the user while the outage is happening.

110



FODC: Components

Item File Name Release Auto/Manual

db2fodc executable db2fodc sqllib/bin M

hang script db2cos_hang sqllib/bin M

performance script db2cos_perf sqllib/bin M

index error script db2cos_indexerror_short

db2cos_indexerror_long
sqllib/bin both

bad page script db2cos_datacorruption sqllib/bin A

trap script db2cos_trap sqllib/bin A

threshold script db2cos_threshold sqllib/bin M

111

111



FODC: Customization

• The behaviour of the data collection is controlled via arguments passed to both 
db2fodc and the data collection scripts, and can be customized. The callout 

scripts can be modified, too.

• On UNIX, sqllib/bin/db2cos_hang to sqllib/adm/db2cos_hang, then 

modify the copy. On Windows, modify the default script in 
sqllib/bin/db2cos_hang.bat.

• In other words, on UNIX, db2fodc first tries to execute 

sqllib/adm/db2cos_hang; if not found, sqllib/bin/db2cos_hang is 

used. On Windows, sqllib/bin/db2cos_hang.bat is always launched.

• A useful trick is to modify db2cos_hang by enabling no_wait="ON". This 

will remove sleeps between iterations, making the script finish faster. Great 

mostly for hang situations, not so much for performance scenarios.

112

112



Manual FODC: Syntax

-hang

Collects FODC data related to a potential hang situation or a performance 

issue.

-perf

Collects data related to a performance issue.

113

db2fodc –hang is currently the preferred method for collecting information for both performance and 

hang issues, although your mileage may vary. The –perf option has less impact on a running workload. 

The disadvantage is that –perf collects less information than –hang.

113



Manual FODC: Basic vs. Full

• Each of the -hang/-perf options accepts another parameter specifying how 

much data we want to collect:

basic

The basic collection mode will be run, without user interaction.

full

The full collection mode will be executed, without user interaction.

• If neither basic nor full is specified, the tool will be interactive. This will be a 

problem in partitioned environments! Always use basic or full when executing 

against a remote partition.

114

114



Manual FODC: Partitioned Environment

-dbpartitionnum (or –dbp) dbpartition_number

• Collects FODC data related to all the specified database partition numbers. Only a local 
partition can be specified, i.e. does not work for partitions located on remote physical machines. 
By default, only information from the current partition number is collected.

-alldbpartitionnum (or -alldbp)

• Specifies that this command is to run on all active database partition servers in the instance. 
db2fodc will report information from database partition servers on the same physical machine 

that db2fodc is being run on.

• In a multi-partitioned environment with multiple physical nodes invoke db2fodc on all the 
nodes in a single invocation in the following way:

rah “; db2fodc -hang <options> -alldbp”

115

115



FODC: Output

• The output data is located in an FODC_<symptom>_<timestamp>

subdirectory in the default diagnostic path, where symptom is the outage 

symptom (hang, etc..), and timestamp is the start time of the invocation. A 

db2diag.log diagnostic message is logged to inform the user about the 

directory name used.

• db2fodc uses a log file, db2fodc_*.log, placed inside the FODC directory. 

Inside this file db2fodc will also store status information and meta-data 

describing the FODC package. This file will contain information on the type of 

FODC, the start/stop timestamp of data collection, and other information useful 

for the analysis of the FODC package.

• db2support can be used to collect any FODC packages found under 

DIAGPATH

116

116



Standardized Investigation for Outages

FODC 

Package

Standardized

Db2

Engine

DB
Data Mining

db2cos
Standardized

Manual FODC 

(db2cos)

(db2fodc –hang)

Auto FODC

(db2cos)

db2support
Standardized

(context collection)

db2fodc
Standardized

FODC 

analysis
Standardized

Customer/Vendor Responsibility IBM Responsibility

Manual 

Customer 

Analysis

Preparing to 

Engage IBM

117

117



FODC: Most Common Packages

NAME AUTO/MANUAL DESCRIPTION

FODC_AppErr A Unexpected application termination (e.g. SQL0901N)

FODC_BadPage A Bad page (e.g. page checksum problem)

FODC_DBMarkedBad A Database marked bad (e.g. transaction logging issue)

FODC_Hang M Hang-related information

FODC_IndexError Both Index problems (e.g. index corruption)

FODC_Panic A Self-inflicted Db2 death, panic (e.g. severe problem)

FODC_Perf M Performance-related data

FODC_Trap A Trap (e.g. programming error, memory corruption)

FODC_Member A pureScale member issue

118

FODC_Member

* New FODC collection for Db2 pureScale feature.

* Supported only on Linux and AIX in Db2 V9.8 and V10

* Collection is done by db2roam process for a member when:

- Member fails to respond to a whitelisting event from CF. For example, the member is 

not responding to a reconstruct notification from CF which will delay all in-flight transactions 

to continue running.

- Member initiate a suicide, i.e. member has lost all contact with the CFs and decides that the 

quickest way out of it is to commit suicide and be restarted.

* FODC calls are placed within db2rocm process so that diagnostic data are collected before kill signal is 

sent to a member.

* FODC call invokes PD callout scripts db2cos_member in <DB2DIR>/bin directory  

* All diagnostic information are direct to a new FODC directory FODC_Member_<timestamp> created in 

DIAGPATH.

* Timeout for the PD data collection is 20 seconds

118



FODC: DB2FODC Variable

SUBOPTION DESCRIPTION DEFAULT

DUMPCORE: ON | OFF Core file generation ON

DUMPDIR: path to 

directory

Specifies absolute pathname of the directory 

where core file or shared memory dump will be 

created. 

Default diagnostic 

directory

CORELIMIT:size The maximum size of core files created. Not applicable

DUMPSHMEM: ON | OFF Shared memory dump during outage OFF

MEMSCAN: ON | OFF Memory scan on outage OFF

To change the FODC parameters:
db2pdcfg -fodc DUMPCORE=ON CORELIMIT=2000

To make these changes permanent:
db2set DB2FODC="DUMPCORE=ON CORELIMIT=2000"

119

119



Essential Tools: db2pd/db2pdcfg

• “Monitor and Troubleshoot Db2” command
• Retrieves various statistics, internal meta-data, and snapshot information from a running 

Db2 instance

• Similar to the “onstat” utility for Informix

• Run “db2pd -help” for options

• Completely non-intrusive, doesn’t acquire latches
• Very fast retrieval

• Doesn’t impact the engine in any way (can be run even if system is hung)

• Data may not always be completely accurate

• Read-only operations are possible in db2pd. Operations modifying Db2’s 
behaviour have been moved to db2pdcfg.

120

120



Essential Tools: dsmtop

• What is dsmtop?

• Monitoring tool providing a dynamic real-time view of a running Db2 system

• Can be used to monitor Db2 10.1 and above

• As of Db2 11.1, shipped with the product

• Replacement of the now-deprecated db2top

• What can dsmtop do for you?

• It calls Db2 monitor APIs repeatedly in background, and displays the result 

in a “semi-graphic” console interface

• Help to calculate several common matrices, such as bufferpool hit ratio

• Provide some basic performance analysis

121

121



Essential Tools: dsmtop Example

122

122



Bring System Back Online

• If we are completely hung, all commands are stuck, and the usual ways to stop 
the instance (db2stop force) are hanging too, we will have to kill the 
instance. This will forcefully bring down the instance in an unfriendly way:

123

db2_kill (UNIX/Linux)

db2nkill.exe (Windows) 

• Once the instance has been shut down, some time should be spent to ensure 
there are no rogue/stray Db2 processes or resources:

ps –elf/ipcs –a (UNIX/Linux)

Task Manager (Windows)

123



Cannot Kill?

• If a process cannot be killed even using the most privileged OS commands 
such as SIGKILL (kill -9) on UNIX/Linux or taskkill on Windows, then 
the process is likely stuck in the OS kernel.

• This is an operating system problem and likely the hang itself is also an 
operating system problem. Need to contact OS support and/or collect OS 
dumps.

• Typically, the only way to get out of this state is to reboot the machine once the 
necessary OS data has been collected.

124

•It is not programmatically possible to avoid a SIGKILL (9).  If a process is not responding to SIGKILL, 

it means it’s stuck in OS kernel code. 

•It’s likely that crash recovery will be required after a kill.  If the first connect gives an error or does not 

complete, then there may be a crash recovery problem.

•Unresponsive crash recovery is not *usually* a real hang. Use db2pd –db <dbname> –recovery

to monitor crash recovery progress.

124



HANG EXERCISE 1 – SIMULATED

125



Exercise 1

SESSION 1:

$ db2 “connect to sample”

<...hanging...>

SESSION 2:

$ db2 “connect to sample”

<...hanging...>

SESSION 3:

$ db2 “list active databases”

<...hanging...>

126

Two ways to collect data:

1. Collect everything – recommended, db2fodc –hang can be helpful

2. Iterative – iteratively get to the root cause; for intermediate/advanced users

126



Collect Everything: db2fodc -hang

$ db2fodc -hang basic

"db2fodc": List of active databases: "SAMPLE"

**********************WARNING***********************

*     This tool should be run with caution.        *

*     It can cause significant performance         *

*  degradation, especially on busy systems with a  *

*        high number of active connections         *

*                                                  *

*   All times specified below are estimates based  *

*    on the test runs and your individual times    *

*       may vary depending on hardware and         *

*     OS configurations and current workload       *

****************************************************

You have 10 seconds to cancel this script with Ctrl-C

You may interrupt execution at any time by issuing Ctrl-C

The script will then dump any active db2 trace, and inform where to find

the output files

<...several minutes later...>

Output directory is /home/db2inst1/sqllib/db2dump/FODC_Hang_2018-04-17-14.35.53.447540

Open db2fodc_hang.log in that directory for details of collected data

127

Note that since we are unable to connect to the database, we are using the –basic option of db2fodc

which does not need a database connect. The –full option collects more data, e.g. DB snapshots, but 

unfortunately this is a no-go in this case.

127



Diagnostics: Call Stacks
$ ls -l FODC_Hang_2018-04-17-14.35.53.447540

-rw-r--r-- 1 db2inst1 db2iadm1 55718 Apr 17 14:40 6258.1.000.stack.txt

-rw-r--r-- 1 db2inst1 db2iadm1 55004 Apr 17 14:40 6258.11.000.stack.txt

-rw-r--r-- 1 db2inst1 db2iadm1 54878 Apr 17 14:40 6258.12.000.stack.txt

-rw-r--r-- 1 db2inst1 db2iadm1 27747 Apr 17 14:38 6258.13.000.stack.txt

-rw-r--r-- 1 db2inst1 db2iadm1 55334 Apr 17 14:40 6258.14.000.stack.txt

-rw-r--r-- 1 db2inst1 db2iadm1 54688 Apr 17 14:40 6258.15.000.stack.txt

-rw-r--r-- 1 db2inst1 db2iadm1 55664 Apr 17 14:40 6258.16.000.stack.txt

-rw-r--r-- 1 db2inst1 db2iadm1 59742 Apr 17 14:40 6258.17.000.stack.txt

-rw-r--r-- 1 db2inst1 db2iadm1 54862 Apr 17 14:40 6258.18.000.stack.txt

-rw-r--r-- 1 db2inst1 db2iadm1 54864 Apr 17 14:40 6258.19.000.stack.txt

-rw-r--r-- 1 db2inst1 db2iadm1 54864 Apr 17 14:40 6258.20.000.stack.txt

-rw-r--r-- 1 db2inst1 db2iadm1 54860 Apr 17 14:40 6258.21.000.stack.txt

-rw-r--r-- 1 db2inst1 db2iadm1 55698 Apr 17 14:40 6258.22.000.stack.txt

-rw-r--r-- 1 db2inst1 db2iadm1 55834 Apr 17 14:40 6258.23.000.stack.txt

-rw-r--r-- 1 db2inst1 db2iadm1 55836 Apr 17 14:40 6258.24.000.stack.txt

-rw-r--r-- 1 db2inst1 db2iadm1 55836 Apr 17 14:40 6258.25.000.stack.txt

-rw-r--r-- 1 db2inst1 db2iadm1 59440 Apr 17 14:40 6258.26.000.stack.txt

-rw-r--r-- 1 db2inst1 db2iadm1 59354 Apr 17 14:40 6258.27.000.stack.txt

-rw-r--r-- 1 db2inst1 db2iadm1 59354 Apr 17 14:40 6258.28.000.stack.txt

drwxr-xr-x 2 db2inst1 db2iadm1  4096 Apr 17 14:42 DB2CONFIG

-rw-r--r-- 1 db2inst1 db2iadm1  3978 Apr 17 14:42 db2fodc_hang.log

drwxr-xr-x 2 db2inst1 db2iadm1  4096 Apr 17 14:42 DB2PD

drwxr-xr-x 2 db2inst1 db2iadm1  4096 Apr 17 14:36 DB2SNAPS

drwxr-xr-x 2 db2inst1 db2iadm1  4096 Apr 17 14:42 DB2TRACE

drwxr-xr-x 2 db2inst1 db2iadm1  4096 Apr 17 14:36 OSCONFIG

drwxr-xr-x 2 db2inst1 db2iadm1  4096 Apr 17 14:37 OSSNAPS

drwxr-xr-x 2 db2inst1 db2iadm1  4096 Apr 17 14:37 OSTRACE
128

The stacks are the most critical piece of information for hangs.

128



Waiters: Method 1

$ vi StackAnalysis.out

00007FC71126F86E sqloSpinLockConflict + 0x0240

00007FC710E895C7 _ZN13sqeDBIterator13lockDbMgrArgsEPKci + 0x00b7

00007FC710FDD4C7 _Z17sqm_get_next_dbcbbPP13dbcb_use_listPP16sqeLocalDatabaseb + 0x00a5

00007FC710FA8656 _Z12sqlmonssagntj13sqm_entity_idP6sqlmaijPvP14sqlm_collectedttP5sqlca + 0x02e6

00007FC710FD9188 _Z15sqlmonssbackendP12SQLE_DB2RA_T + 0x0500

Found in:

./6258.27.000.stack.txt -- db2agent(instance) -- 2018-04-17-14.38.04.895773(Signal #10)

./6258.27.000.stack.txt -- db2agent(instance) -- 2018-04-17-14.40.05.637437(Signal #10)

./6258.28.000.stack.txt -- db2agent(instance) -- 2018-04-17-14.38.04.894481(Signal #10)

./6258.28.000.stack.txt -- db2agent(instance) -- 2018-04-17-14.40.05.637776(Signal #10)

00007FC71126F86E sqloSpinLockConflict + 0x0240

00007FC710EC1FFC _ZN8sqeDBMgr23StartUsingLocalDatabaseEP8SQLE_BWAP8sqeAgentRccP8sqlo_gmt + 0x1074

00007FC710EABAE1 _ZN14sqeApplication13AppStartUsingEP8SQLE_BWAP8sqeAgentccP5sqlcaPc + 0x0209

00007FC710EA6D1E _ZN14sqeApplication13AppLocalStartEP14db2UCinterface + 0x01b8

Found in:

./6258.26.000.stack.txt -- db2agent(SAMPLE) -- 2018-04-17-14.38.04.898404(Signal #10)

./6258.26.000.stack.txt -- db2agent(SAMPLE) -- 2018-04-17-14.40.05.637623(Signal #10)

129

Three unique Db2 EDUs (note the different timestamps) are stuck in lockDbMgr() -> 

sqloSpinLockConflict(). The presence of sqloSpinLockConflict() indicates that these agents are waiting 

for a latch.

The “analyzestack” tool was used (see earlier slides) to generate StackAnalysis.out.

Concluding that sqloSpinLockConflict() means that the EDU is waiting for a latch takes some 

experience. However, the backup slides will try to list the most frequent call stack routines to make this 

decision easier.

129



Holders: Method 1

$ vi StackAnalysis.out

00007FC70FC58765 ossSleep + 0x003b

00007FC711B6A5DB _ZN16sqeLocalDatabase12FirstConnectEP8SQLE_BWARcP8sqeAgentP8sqlo_gmtii + 0x0307

00007FC710EC1BE8 _ZN8sqeDBMgr23StartUsingLocalDatabaseEP8SQLE_BWAP8sqeAgentRccP8sqlo_gmt + 0x0c60

00007FC710EABAE1 _ZN14sqeApplication13AppStartUsingEP8SQLE_BWAP8sqeAgentccP5sqlcaPc + 0x0209

00007FC710EA6D1E _ZN14sqeApplication13AppLocalStartEP14db2UCinterface + 0x01b8

Found in:

./6258.17.000.stack.txt -- db2agent(SAMPLE) -- 2018-04-17-14.38.04.897566(Signal #10)

./6258.17.000.stack.txt -- db2agent(SAMPLE) -- 2018-04-17-14.40.05.636082(Signal #10)

130

• Unlike in the case of Waiters, this EDU is not immediately visible to an inexperienced eye. 

However, a closer examination reveals that all the waiters are waiting for a local database start.

• Having reviewed “StackAnalysis.out”, EDU 17 seems to be the only logical candidate here. 

This Db2 agent is the only thread other than the Waiters that has anything to do with a database 

start.

• At this point it would be nice to have access to Db2 source code (check with your local Torrent 

supplier ☺).

130



Waiters: Method 2

$ grep  -i "latch type" *.txt | sort

6258.17.000.stack.txt:Holding Latch type: (SQLO_LT_sqeDBMgr__dbMgrLatch) - Address: (0x2007301e8), Line: 4731, File: 

sqle_database.C HoldCount: 1

6258.17.000.stack.txt:Holding Latch type: (SQLO_LT_sqeDBMgr__dbMgrLatch) - Address: (0x2007301e8), Line: 4731, File: 

sqle_database.C HoldCount: 1

6258.26.000.stack.txt:Waiting on latch type: (SQLO_LT_sqeDBMgr__dbMgrLatch) - Address: (0x2007301e8), Line: 681, File: 

sqle_database_services.C

6258.26.000.stack.txt:Waiting on latch type: (SQLO_LT_sqeDBMgr__dbMgrLatch) - Address: (0x2007301e8), Line: 681, File: 

sqle_database_services.C

6258.27.000.stack.txt:Waiting on latch type: (SQLO_LT_sqeDBMgr__dbMgrLatch) - Address: (0x2007301e8), Line: 280, File: 

sqlmutil.C

6258.27.000.stack.txt:Waiting on latch type: (SQLO_LT_sqeDBMgr__dbMgrLatch) - Address: (0x2007301e8), Line: 280, File: 

sqlmutil.C

6258.28.000.stack.txt:Waiting on latch type: (SQLO_LT_sqeDBMgr__dbMgrLatch) - Address: (0x2007301e8), Line: 280, File: 

sqlmutil.C

6258.28.000.stack.txt:Waiting on latch type: (SQLO_LT_sqeDBMgr__dbMgrLatch) - Address: (0x2007301e8), Line: 280, File: 

sqlmutil.C

131

Remember that a call stack contains latch information (if the latch is trackable).

Pay close attention to the address! The address is always unique for a latch. Two different latches 

residing at two different addresses can share the same symbolic latch type (name)!

Some latches in Db2 are not trackable. Typically, those are “hot” latches, i.e. latches that are very 

frequently accessed. Tracking those would imply a significant performance degradation. For this reason it 

is good to learn the previous method as well.

Unlike in the previous method, this picture gives an obvious explanation on the deadlatch.

131



Conclusion

• EDU 27 and 28

• waiting for SQLO_LT_sqeDBMgr__dbMgrLatch at 0x2007301e8

• stuck in lockDbMgrArgs() 

• EDU 26

• waiting for SQLO_LT_sqeDBMgr__dbMgrLatch at 0x2007301e8

• stuck in StartUsingLocalDatabase()

• EDU 17

• holding SQLO_LT_sqeDBMgr__dbMgrLatch at 0x2007301e8

• stuck in FirstConnect() -> ossSleep() - doing nothing

• The problem is with EDU 17. Using application snapshots or db2pd, we could map this EDU 
to a running application. However, do not be searching for known defects. Remember, a 
custom made library was used, and a sleep command was injected into FirstConnect() ☺

• Admittedly, this has been somewhat too textbook-like example. Now that we have a general 
idea, the next example will be harder. But first, let’s see how this approach compares with 
investigating performance problems!

132

132



PERFORMANCE EXERCISE – SIMULATED

133



Exercise

Starting a performance test...

$ time db2 “select * from staff” > /dev/null

real    0m5.90s

user    0m0.08s

sys     0m2.45s

134

1. Baseline test

Starting a performance test...

$ time db2 “select * from staff” > /dev/null

real    13m16.26s

user    0m0.18s

sys     0m3.95s

2. After some secret modifications ☺

The first test reflects the normal processing times. The second test indicates a problem. We are assuming 

that we do not know what has changed, and there is no way to revert any potential changes until we know 

what may have triggered the failing behaviour.

134



Collect Everything I: db2fodc –hang full

Starting a performance test...

$ time db2 “select * from staff” > /dev/null

<...open another session or send the session to the background...>

<...issue the following command while the problem is present...>

$ db2fodc -hang full

...

Collecting more DB2 CONFIG info (started at 04:28:11 PM)

Estimated time to completion is 5 minutes (Ctrl-C to interrupt)

Note: next steps may hang on busy or non-responsive systems

since they require connection to database.

......Finished at 04:28:14 PM

.Collecting DB2 monitoring info (started at 04:28:15 PM)

Estimated time to completion is 10 minutes (Ctrl-C to interrupt)

...........Waiting 1 minutes and 0 secs before starting the next iteration...

...........Finished at 04:29:34 PM

.

Output directory is /home/db2inst1/sqllib/db2dump/FODC_Hang_2018-04-24-16.16.35.819757

Open db2fodc_hang.log in that directory for details of collected data

135

•In this example, we are collecting all the data at once. Experienced users may try to collect data 

interactively on the fly.

•Similar to investigating hangs, diagnostic data for performance problems must be collected while the 

performance problem is present. Usually, post-mortem is not possible – unless the problem has some 

easily visible symptoms in db2diag.log or other static diagnostic logs.

•We can run the “full” option of “db2fodc –hang” since we are able to connect to the database just fine 

when the problem is present, i.e. this is not a blocking issue.

•Note that there is also the “db2fodc –perf” option. There are advantages and disadvantages to using the 

“-perf” switch. The advantage is that the output is arguably easier to look at as less “types” of data is 

being gathered. The disadvantage is that this information alone is often insufficient to determine the root 

cause; “-hang” is better in this sense.

135



Operating System: Disk/CPU/Memory

$ cat FODC_Hang*/OSSNAPS/vmstat.1

16:17pm  up   2:27,  1 user,  load average: 1.05, 0.41, 0.71

procs -----------memory---------- ---swap-- -----io---- -system-- -----cpu------

r  b   swpd free   buff  cache   si so    bi    bo in   cs us sy id wa st

0  2  14304  66568   5848 458032    0    5 23605   130  302  804  3  7 63 27  0

1  2  14304  66308   5856 458016    0    0 58880   236  999 1521  4 14  0 82  0

1  2  14304  78476   5664 446148    0    0 50304     0  878 1352 12 24  0 64  0

0  2  14304  78612   5664 446148    0    0 55680     0  927 1435  1 15  0 84  0

2  2  14304  78620   5664 446140    0    0 59776     0  979 1500  1 12  0 87  0

0  2  14304  78620   5664 446140    0    0 58240   168  999 1494  1 12  0 87  0

0  2  14304  78620   5664 446116    0    0 54656     0  905 1392  1 14  0 85  0

0  2  14304  78744   5664 446116    0    0 41344     0  716 1096  2 13  0 85  0

0  2  14304  78760   5664 446108    0    0     0     0   49  121  1  0  0 99  0

1  2  14304  78760   5664 446108    0    0 41472     0  696 1093  0 11  0 89  0

136

• Blocked queue (“b”) constantly above zero => processes doing I/O

• I/O wait time (“wa”) very high => waiting for I/O operations to complete

Conclusion: The system is I/O bound

OSSNAPS/vmstat.1/2:

136



Applications

Application handle                         = 72

Application status                         = UOW Executing

Application name                           = db2bp

Snapshot timestamp                         = 04/24/2018 16:28:26.734603

Time waited for prefetch (ms)              = 0

Rows selected                              = 117286

Rows read                                  = 117467

Rows fetched                               = 0

Buffer pool data logical reads             = 0

137

DBSNAPS/SAMPLE.appsnap.nX.1/2: The only active application is 72:

Application handle                         = 72

Application status                         = UOW Executing

Application name                           = db2bp

Snapshot timestamp                         = 04/24/2018 16:29:34.182203

Time waited for prefetch (ms)              = 27228

Rows selected                              = 128731

Rows read                                  = 128912

Rows fetched                               = 10877

Buffer pool data logical reads             = 68

Compare the following snapshots taken one minute apart. There is a slight increase of every counter. We 

appear to be reading data from the disk.

137



I/O Frequency

Bufferpool name                            = IBMDEFAULTBP

Snapshot timestamp                         = 04/24/2018 16:28:27.198703

Buffer pool data physical reads            = 55712

Total buffer pool read time (milliseconds) = 20418

Asynchronous pool data page reads          = 55712

Total elapsed asynchronous read time       = 20418

Asynchronous data read requests            = 3482

Vectored IOs                               = 3482

Pages from vectored IOs                    = 55712

138

DBSNAPS/SAMPLE.bpsnap.nX.1/2: Busy buffer pool IBMDEFAULTBP:

Bufferpool name                            = IBMDEFAULTBP

Snapshot timestamp                         = 04/24/2018 16:29:34.586742

Buffer pool data logical reads             = 75

Buffer pool data physical reads            = 749088

Total buffer pool read time (milliseconds) = 154359

Asynchronous pool data page reads          = 749088

Total elapsed asynchronous read time       = 154359

Asynchronous data read requests            = 46818

Vectored IOs                               = 46818

Pages from vectored IOs                    = 749088

Compare the following snapshots taken one minute apart. There is a significant increase of every counter. 

The symptoms are indicative of an increased prefetching activity.

138



Db2 EDUs (Engine Dispatchable Units)

EDU ID  EDU Name                        USR (s)      SYS (s) 

=============================================================

59      db2agntdp (SAMPLE  ) 0          0.010000     0.000000

58      db2agntdp (SAMPLE  ) 0          0.040000     0.010000

57      db2agntdp (SAMPLE  ) 0          0.170000     0.090000

56      db2evmgi (DB2DETAILDEADLOCK) 0  0.200000     0.030000

55      db2pfchr (SAMPLE) 0             0.010000     0.000000

54      db2pfchr (SAMPLE) 0             0.200000    14.520000

53      db2pfchr (SAMPLE) 0             0.190000    21.980000

52      db2pclnr (SAMPLE) 0             0.000000     0.000000

51      db2dlock (SAMPLE) 0             0.000000     0.030000

50      db2lfr (SAMPLE) 0               0.000000     0.000000

49      db2loggw (SAMPLE) 0             0.030000     0.020000

48      db2loggr (SAMPLE) 0             0.200000     0.200000

47      db2wlmd (SAMPLE) 0              0.120000     0.100000

46      db2taskd (SAMPLE) 0             0.160000     0.070000

45      db2fw0 (SAMPLE) 0               0.180000     0.080000

44      db2agent (SAMPLE) 0             0.350000     0.420000

31      db2stmm (SAMPLE) 0              0.400000     0.390000

16      db2resync 0                     0.010000     0.000000

15      db2tcpcm 0                      0.000000     0.000000

14      db2ipccm 0                      0.060000     0.040000

12      db2thcln 0                      0.000000     0.010000

11      db2alarm 0                      0.440000     0.270000

1       db2sysc 0                       0.970000     1.200000

139

DB2PD/db2pd.edus.txt: Busy prefetchers, EDUs 53 and 54

Conclusion: This matches our previous suspicion – prefetching gone wrong?

139



Call Stacks

$ vi StackAnalysis.out

Stack: 

======================

00007F10565C5FB0 readv + 0x00e0 

00007F10587FFFCC sqloReadV + 0x0236 

00007F1058E5225B sqlbReadAndReleaseBuffers + 0x04e7 

00007F1058E5080F sqlbProcessRange + 0x0649 

00007F1058E5010E sqlbServiceRangeRequest + 0x00c8 

00007F1058E4D9DD sqlbPFPrefetcherEntryPoint + 0x0977 

00007F1058E4D030 sqbPrefetcherEdu6RunEDUEv + 0x003a 

Summary:

Found in 6 stacks of a total of 68 stacks in 24 files

Found in:

./10587.53.000.stack.txt -- db2pfchr(SAMPLE) -- 2018-04-24-16.18.58.091218(Signal #10)

./10587.53.000.stack.txt -- db2pfchr(SAMPLE) -- 2018-04-24-16.21.03.416486(Signal #10)

./10587.53.000.stack.txt -- db2pfchr(SAMPLE) -- 2018-04-24-16.23.10.484986(Signal #12)

./10587.54.000.stack.txt -- db2pfchr(SAMPLE) -- 2018-04-24-16.18.58.096031(Signal #10)

./10587.54.000.stack.txt -- db2pfchr(SAMPLE) -- 2018-04-24-16.21.03.416319(Signal #10)

./10587.54.000.stack.txt -- db2pfchr(SAMPLE) -- 2018-04-24-16.23.10.477532(Signal #12)

140

Conclusion: Indeed, prefetchers 53 and 54 very busy reading data from the disk!

We already know how to use the “analyzestack” tool to create StackAnalysis.out

140



Collect Everything II: db2fodc –perf full:

$ ls -l FODC_Perf*

-rw-r--r-- 1 db2inst1 db2iadm1  2245 Apr 24 16:50 db2fodc.log

drwxr-xr-x 2 db2inst1 db2iadm1  4096 Apr 24 16:37 db2perfcount.0305

drwxr-xr-x 2 db2inst1 db2iadm1  4096 Apr 24 16:46 db2perfcount.0837

drwxr-xr-x 2 db2inst1 db2iadm1  4096 Apr 24 16:45 db2trc.0761

-rw-r--r-- 1 db2inst1 db2iadm1     0 Apr 24 16:32 iostat.out

drwxr-xr-x 2 db2inst1 db2iadm1  4096 Apr 24 16:49 snapshots

drwxr-xr-x 2 db2inst1 db2iadm1  4096 Apr 24 16:33 StackTrace.0077

drwxr-xr-x 2 db2inst1 db2iadm1  4096 Apr 24 16:36 StackTrace.0229

drwxr-xr-x 2 db2inst1 db2iadm1  4096 Apr 24 16:40 StackTrace.0457

drwxr-xr-x 2 db2inst1 db2iadm1  4096 Apr 24 16:42 StackTrace.0609

drwxr-xr-x 2 db2inst1 db2iadm1  4096 Apr 24 16:47 StackTrace.0913

-rw-r--r-- 1 db2inst1 db2iadm1 17862 Apr 24 16:49 vmstat.out

141

• Arguably the most useful data from db2fodc –perf full is the performance traces and 

call stacks (StackTrace.*).

• The stack traces are really a subset of those gathered by db2fodc –hang, and we have 

already reviewed those. Only the “hottest” stacks have been gathered.

• However, the performance traces are something new:

Let us interrupt the investigation for a bit. The user may also decide to gather “db2fodc –perf full”

information. The advantage/disadvantages have already been discussed on the previous slides. This page 

shows how this data may be useful in our investigation.

141



Formatting Performance Traces

$ db2trc perffmt perfcount_dmp perfcount_dmp.fmt

$ sort -k 2.2b,3rn -k 4,5rn perfcount_dmp.fmt > perfcount_dmp.fmt.sorted

$ head perfcount_dmp.fmt.sorted

318     (53 sec, 491624000 nanosec)      sqloWaitEDUWaitPost

7607    (19 sec, 807799000 nanosec)      sqloReadV

7600    (19 sec, 767058000 nanosec)      sqloReadVLow

3       (5 sec, 602000 nanosec)          sqlorque2

3       (5 sec, 404000 nanosec)          sqlorqueInternal

1       (0 sec, 13718000 nanosec)        sqlfReadDb2nodes

1       (0 sec, 13660000 nanosec)        sqloReadDb2nodes

14      (0 sec, 7237000 nanosec)         sqloGetEnvUnCached

42      (0 sec, 6992000 nanosec)         EnvPrfOpen

2       (0 sec, 3913000 nanosec)         sqlfcsys

142

• A performance trace shows the most frequently executed routines

• 1st column: <number of executions>, 2nd column: <total time>, 3rd: <routine>

Conclusion: A lot of time spent executing sqloReadV() – disk readv() routine

The conclusion matches our previous slides. There is a process/processes that is/are performing a lot of 

disk reads. From the call stacks (see previous slides) we know that it is the prefetchers.

142



Trace Facility

$ db2trc on -t -p 10587,13970798804352024592 -f trace.dmp

Trace is turned on

$ db2trc flw -t trace.dmp trace.flw

$ vi trace.flw

pid = 10587 tid = 139707992237824 node = 0

188            0.002303000   sqloReadV entry [eduid 80 eduname db2pfchr]

189            0.002305000   | sqloReadVLow entry [eduid 80 eduname db2pfchr]

192            0.004709000   | sqloReadVLow exit

193            0.004722000   sqloReadV exit

194            0.004723000   sqloReadV entry [eduid 80 eduname db2pfchr]

195            0.004724000   | sqloReadVLow entry [eduid 80 eduname db2pfchr]

200            0.007196000   | sqloReadVLow exit

201            0.007213000   sqloReadV exit

202            0.007214000   sqloReadV entry [eduid 80 eduname db2pfchr]

203            0.007215000   | sqloReadVLow entry [eduid 80 eduname db2pfchr]

209            0.009680000   | sqloReadVLow exit

210            0.009692000   sqloReadV exit

143

• DB2TRACE/db2trace1/2.flw too short (no data for the prefetchers 53 and 54)

• If the issue is reproducible, we can take custom traces:

Conclusion: Could the prefetcher be looping?

[-t]

Include timestamps.

[-p <pid>[.<tid>][,<pid>[.<tid>]]]

Trace or format only these process/thread combinations.

[-l [<bufferSize>] | -i [<bufferSize>] | -f <filename>]

Trace into shared memory (-l, -i) or to a file (-f). 

143



Conclusion

1. System I/O bound

2. Application running a SELECT issuing a lot of prefetching requests

3. Prefetchers spending a lot of time reading data from disk

4. Prefetchers possibly looping

• This alone is usually sufficient to focus on the offending application (e.g. gather explains), or 
search for existing APARs

• The real root cause:

• A modified Db2 library was used

• The library had new injection points in the prefetching code path

• Instead of doing one prefetch, the prefetcher was issuing 10,000 identical read requests in a loop ☺

• This had resulted in an enormous I/O strain

144

144



HANG EXERCISE 2 – REAL WORLD

145



Exercise 2: Workshop Environment

$ db2level

DB21085I  Instance "db2inst1" uses "64" bits and DB2 code release "SQL09070"

with level identifier "08010107".

Informational tokens are "DB2 v9.7.0.0", "s090521", "LINUXAMD6497", and Fix

Pack "0".

Product is installed at "/opt/ibm/db2/V9.7".

$ uname -a

Linux demobox 3.0.13-0.27-default #1 SMP Wed Feb 15 13:33:49 UTC 2018 (d73692b) x86_64 x86_64 x86_64

GNU/Linux

146

The exercise assumes the existence a single partitioned Db2 instance running Db2 9.7 GA. 

This is a real life scenario reported from the field. The GA level was specifically chosen to allow 

us to reproduce the known problem.

146



Exercise 2

$ db2 "connect to sample"

Database Connection Information

Database server        = DB2/LINUXX8664 9.7.0

SQL authorization ID   = DB2INST1

Local database alias   = SAMPLE

$ db2 "create table t1 (i1 int, c2 char(250) generated always as (i1))"

DB20000I  The SQL command completed successfully.

$ db2 "import from 'dataFile01.del' of del messages /dev/null insert into t1 (i1)"

Number of rows read         = 50

Number of rows skipped      = 0

Number of rows inserted     = 50

Number of rows updated      = 0

Number of rows rejected     = 0

Number of rows committed    = 50

$ db2 "create index i1 on t1 (i1,c2) pctfree 0"

DB20000I  The SQL command completed successfully.

$ db2 "create table t2 (i1 int, c2 char(250) generated always as (i1), c3 char(250) generated always as (i1), c4 
char(250) generated always as (i1), c5 char(250) generated always as (i1))"

DB20000I  The SQL command completed successfully.

147

147



Exercise 2 (cont’d)

$ db2 "create table t3 (i1 int, c2 char(1) generated always as (i1))"

DB20000I  The SQL command completed successfully.

$ db2 "connect reset"

DB20000I  The SQL command completed successfully.

$ db2 "update db cfg for sample using LOGBUFSZ 4 LOGFILSIZ 4 LOGPRIMARY 2 LOGSECOND 0 SOFTMAX 200"

DB20000I  The UPDATE DATABASE CONFIGURATION command completed successfully.

$ db2stop; db2start; db2 "connect to sample“

<...skipping...>

$ db2 "insert into t2 (i1) values 1"

DB20000I  The SQL command completed successfully.

<...repeat 16 times...>

$ db2 "insert into t3 (i1) values 1"

DB20000I  The SQL command completed successfully.

<...repeat 8 times...>

$ db2 "insert into t1 (i1) values 1,3,5,7,9"

<...HANGS...>

148

148



Putting It All Together

149

NO LATCHES? HUH? This is weird! Time to take a look at the stacks:

$ ~/sqllib/pd/analyzestack -i .

<...skipping...>

Analysis Complete ...

$ db2pd -stack all

Attempting to produce all stack traces for database paritition.

See current DIAGPATH for trapfiles.

$ db2pd -latches

Database Partition 0 -- Active -- Up 0 days 01:06:43

Latches:

Address            Holder     Waiter     Filename             LOC

No latch holders.

No latch waiters.

149



Stack Analysis

$ vi StackAnalysis.out

00007F78BD8D1576 sqloltch_notrack + 0x0072

00007F78BDFE66A8 sqlilidx + 0x01dc

00007F78BE01BD0F sqliundo + 0x1007

...

00007F78BD9689EB sqldmund + 0x0193

00007F78BDDE947C sqlptudo + 0x0214

00007F78BDDE8C6F sqlptud1 + 0x023f

00007F78BF21689E sqlpSpRb + 0x02c2

00007F78BD95F1C4 sqldRowInsert + 0x0b38

Found in:

./16524.17.000.stack.txt -- db2agent(SAMPLE)

150

1. We seem to be dealing with an agent that is trying to insert a row.

2. The agent is in the middle of an UNDO (rollback) operation.

3. We are trying to acquire a latch (again, source code would be useful ☺), but there is no 

visible holder for this latch.

ANYONE DARE GUESS? (there is a hint close to the top of this page!)

150



What Happened: Step 1

1. The presence of sqloltch_notrack() tells us that we are trying to acquire a latch that is 

not tracked (“hot”). This is why the latch holder is not visible.

2. The fact that “StackAnalysis.out” contains no other candidates and we have definitely 

gathered the call stacks for all running EDUs means that the owner of the latch must be the 

same EDU!

3. In other words, EDU 17 is self-deadlatching itself. The agent is trying to acquire a latch that 

the agent already owns.

PRETTY GOOD DESCRIPTION => search for existing APARs!

151

151



What Happened: Step 2

152

Search for Db2 APARs at IBM Support Portal

Keyword used: “sqlilidx hang”

IC76906: DB2AGENT HANGS IN SQLILIDX() FOR LATCH AFTER IT HITS LOG FULL 

SITUATION 

Error description

After Db2 hits a log full situation, in rare case some db2agent EDUs performing insert/update/delete may 

hang, and there is at least one hung EDU with these functions on the stack: sqlilidx sqliundo ixmUndo

waiting for latch.

Local fix

Avoid log full situation. Adjusting max_log and num_log_span can help to reduce risk of hitting log full 

situation 

152



Hangs: Important Routines

• The following routines serve as the first eyecatcher. An EDU executing these 

routines is always waiting for a latch, and this EDU should be closely 

examined:

• getConflictComplex

• sqloltch 

• sqloltch_notrack

• sqloSpinLockConflict

153

153



Hangs: Less Important Routines

• The presence of the following routines usually (but not always ☺) indicates that the owning 
EDU is legitimately idle (e.g. sleeping, waiting for work), and the problem is elsewhere:

• msgrcv

• ossSleep

• semtimedop

• sqleIntrptWait

• sqloCSemP

• sqloWaitEDUWaitPost

• sqlorest

• sqlorqueInternal

• Also, if an application state is “UOW Waiting”, this application is NOT executing inside the Db2 
kernel. Instead, the application is waiting for a remote request (usually outside of Db2) => not a 
Db2 issue.

154

154



Pavel's Bio

Senior Manager and Senior Software Engineer with IBM Db2 LUW development, responsible for 

multiple core Db2 kernel components. Always thrilled to work on hard-to-crack puzzles. Expertise in Db2 

LUW kernel architecture, configuration and administration, advanced problem determination, memory 

architecture, memory leak troubleshooting, and assembly language. Hands-on development experience 

with buffer pool management, storage, prefetching, page cleaning, transaction logging, recovery, 

monitoring, and problem determination. As a member of the Db2 team, Pavel spent years in Db2 L2/L3 

advanced support (over 1,500 resolved cases), then transitioned to Db2 LUW kernel development. In his 

past life Pavel was an application developer mostly using C++, SQL, .NET, Oracle, MS-SQL, and 

Informix on Windows, Linux, Solaris, and HP-UX.

155

Pavel Sustr
psustr@ca.ibm.com

@pavel_sustr

That’s all folks!!!  
Happy debugging ☺

Questions/comments and any other 

feedback

will be appreciated.


